File size: 10,416 Bytes
97a6728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import List
import numpy as np
import torch
import tops
import torch.nn.functional as F
from sg3_torch_utils.ops import conv2d_resample
from sg3_torch_utils.ops import upfirdn2d
from sg3_torch_utils.ops import bias_act
from sg3_torch_utils.ops.fma import fma


class FullyConnectedLayer(torch.nn.Module):
    def __init__(self,
                 in_features,  # Number of input features.
                 out_features,  # Number of output features.
                 bias=True,  # Apply additive bias before the activation function?
                 activation='linear',  # Activation function: 'relu', 'lrelu', etc.
                 lr_multiplier=1,  # Learning rate multiplier.
                 bias_init=0,  # Initial value for the additive bias.
                 ):
        super().__init__()
        self.repr = dict(
            in_features=in_features, out_features=out_features, bias=bias,
            activation=activation, lr_multiplier=lr_multiplier, bias_init=bias_init)
        self.activation = activation
        self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
        self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
        self.weight_gain = lr_multiplier / np.sqrt(in_features)
        self.bias_gain = lr_multiplier
        self.in_features = in_features
        self.out_features = out_features

    def forward(self, x):
        w = self.weight * self.weight_gain
        b = self.bias
        if b is not None and self.bias_gain != 1:
            b = b * self.bias_gain
        x = F.linear(x, w)
        x = bias_act.bias_act(x, b, act=self.activation)
        return x

    def extra_repr(self) -> str:
        return ", ".join([f"{key}={item}" for key, item in self.repr.items()])


class Conv2d(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels.
                 out_channels,  # Number of output channels.
                 kernel_size=3,  # Convolution kernel size.
                 up=1,  # Integer upsampling factor.
                 down=1,  # Integer downsampling factor
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 resample_filter=[1, 3, 3, 1],  # Low-pass filter to apply when resampling activations.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 bias=True,
                 norm=False,
                 lr_multiplier=1,
                 bias_init=0,
                 w_dim=None,
                 gain=1,
                 ):
        super().__init__()
        if norm:
            self.norm = torch.nn.InstanceNorm2d(None)
        assert norm in [True, False]
        self.up = up
        self.down = down
        self.activation = activation
        self.conv_clamp = conv_clamp if conv_clamp is None else conv_clamp * gain
        self.out_channels = out_channels
        self.in_channels = in_channels
        self.padding = kernel_size // 2

        self.repr = dict(
            in_channels=in_channels, out_channels=out_channels,
            kernel_size=kernel_size, up=up, down=down,
            activation=activation, resample_filter=resample_filter, conv_clamp=conv_clamp, bias=bias,
        )

        if self.up == 1 and self.down == 1:
            self.resample_filter = None
        else:
            self.register_buffer('resample_filter', upfirdn2d.setup_filter(resample_filter))

        self.act_gain = bias_act.activation_funcs[activation].def_gain * gain
        self.weight_gain = lr_multiplier / np.sqrt(in_channels * (kernel_size ** 2))
        self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]))
        self.bias = torch.nn.Parameter(torch.zeros([out_channels]) + bias_init) if bias else None
        self.bias_gain = lr_multiplier
        if w_dim is not None:
            self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
            self.affine_beta = FullyConnectedLayer(w_dim, in_channels, bias_init=0)

    def forward(self, x, w=None, s=None):
        tops.assert_shape(x, [None, self.weight.shape[1], None, None])
        if s is not None:
            s = s[..., :self.in_channels * 2]
            gamma, beta = s.view(-1, self.in_channels * 2, 1, 1).chunk(2, dim=1)
            x = fma(x, gamma, beta)
        elif hasattr(self, "affine"):
            gamma = self.affine(w).view(-1, self.in_channels, 1, 1)
            beta = self.affine_beta(w).view(-1, self.in_channels, 1, 1)
            x = fma(x, gamma, beta)
        w = self.weight * self.weight_gain
        # Removing flip weight is not safe.
        x = conv2d_resample.conv2d_resample(x, w, self.resample_filter, self.up,
                                            self.down, self.padding, flip_weight=self.up == 1)
        if hasattr(self, "norm"):
            x = self.norm(x)
        b = self.bias * self.bias_gain if self.bias is not None else None
        x = bias_act.bias_act(x, b, act=self.activation, gain=self.act_gain, clamp=self.conv_clamp)
        return x

    def extra_repr(self) -> str:
        return ", ".join([f"{key}={item}" for key, item in self.repr.items()])


class Block(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels, 0 = first block.
                 out_channels,  # Number of output channels.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 up=1,
                 down=1,
                 **layer_kwargs,  # Arguments for SynthesisLayer.
                 ):
        super().__init__()
        self.in_channels = in_channels
        self.down = down
        self.conv0 = Conv2d(in_channels, out_channels, down=down, conv_clamp=conv_clamp, **layer_kwargs)
        self.conv1 = Conv2d(out_channels, out_channels, up=up, conv_clamp=conv_clamp, **layer_kwargs)

    def forward(self, x, **layer_kwargs):
        x = self.conv0(x, **layer_kwargs)
        x = self.conv1(x, **layer_kwargs)
        return x


class ResidualBlock(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels, 0 = first block.
                 out_channels,  # Number of output channels.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 up=1,
                 down=1,
                 gain_out=np.sqrt(0.5),
                 fix_residual: bool = False,
                 **layer_kwargs,  # Arguments for conv layer.
                 ):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.down = down
        self.conv0 = Conv2d(in_channels, out_channels, down=down, conv_clamp=conv_clamp, **layer_kwargs)

        self.conv1 = Conv2d(out_channels, out_channels, up=up, conv_clamp=conv_clamp, gain=gain_out, **layer_kwargs)

        self.skip = Conv2d(
            in_channels, out_channels, kernel_size=1, bias=False, up=up, down=down,
            activation="linear" if fix_residual else "lrelu",
            gain=gain_out
        )
        self.gain_out = gain_out

    def forward(self, x, w=None, s=None, **layer_kwargs):
        y = self.skip(x)
        s_ = next(s) if s is not None else None
        x = self.conv0(x, w, s=s_, **layer_kwargs)
        s_ = next(s) if s is not None else None
        x = self.conv1(x, w, s=s_, **layer_kwargs)
        x = y + x
        return x


class MinibatchStdLayer(torch.nn.Module):
    def __init__(self, group_size, num_channels=1):
        super().__init__()
        self.group_size = group_size
        self.num_channels = num_channels

    def forward(self, x):
        N, C, H, W = x.shape
        with tops.suppress_tracer_warnings():  # as_tensor results are registered as constants
            G = torch.min(torch.as_tensor(self.group_size), torch.as_tensor(N)) if self.group_size is not None else N
        F = self.num_channels
        c = C // F

        # [GnFcHW] Split minibatch N into n groups of size G, and channels C into F groups of size c.
        y = x.reshape(G, -1, F, c, H, W)
        y = y - y.mean(dim=0)               # [GnFcHW] Subtract mean over group.
        y = y.square().mean(dim=0)          # [nFcHW]  Calc variance over group.
        y = (y + 1e-8).sqrt()               # [nFcHW]  Calc stddev over group.
        y = y.mean(dim=[2, 3, 4])             # [nF]     Take average over channels and pixels.
        y = y.reshape(-1, F, 1, 1)          # [nF11]   Add missing dimensions.
        y = y.repeat(G, 1, H, W)            # [NFHW]   Replicate over group and pixels.
        x = torch.cat([x, y], dim=1)        # [NCHW]   Append to input as new channels.
        return x


class DiscriminatorEpilogue(torch.nn.Module):
    def __init__(self,
                 in_channels,  # Number of input channels.
                 resolution: List[int],  # Resolution of this block.
                 mbstd_group_size=4,  # Group size for the minibatch standard deviation layer, None = entire minibatch.
                 mbstd_num_channels=1,  # Number of features for the minibatch standard deviation layer, 0 = disable.
                 activation='lrelu',  # Activation function: 'relu', 'lrelu', etc.
                 conv_clamp=None,  # Clamp the output of convolution layers to +-X, None = disable clamping.
                 ):
        super().__init__()
        self.in_channels = in_channels
        self.resolution = resolution
        self.mbstd = MinibatchStdLayer(group_size=mbstd_group_size,
                                       num_channels=mbstd_num_channels) if mbstd_num_channels > 0 else None
        self.conv = Conv2d(
            in_channels + mbstd_num_channels, in_channels,
            kernel_size=3, activation=activation, conv_clamp=conv_clamp)
        self.fc = FullyConnectedLayer(in_channels * resolution[0] * resolution[1], in_channels, activation=activation)
        self.out = FullyConnectedLayer(in_channels, 1)

    def forward(self, x):
        tops.assert_shape(x, [None, self.in_channels, *self.resolution])  # [NCHW]
        # Main layers.
        if self.mbstd is not None:
            x = self.mbstd(x)
        x = self.conv(x)
        x = self.fc(x.flatten(1))
        x = self.out(x)
        return x