Spaces:
Runtime error
Runtime error
File size: 20,876 Bytes
97a6728 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
import torch
import numpy as np
from dp2 import utils
from dp2.utils import vis_utils, crop_box
from .utils import (
cut_pad_resize, masks_to_boxes,
get_kernel, transform_embedding, initialize_cse_boxes
)
from .box_utils import get_expanded_bbox, include_box
import torchvision
import tops
from .box_utils_fdf import expand_bbox as expand_bbox_fdf
class VehicleDetection:
def __init__(self, segmentation: torch.BoolTensor) -> None:
self.segmentation = segmentation
self.boxes = masks_to_boxes(segmentation)
assert self.boxes.shape[1] == 4, self.boxes.shape
self.n_detections = self.segmentation.shape[0]
area = (self.boxes[:, 3] - self.boxes[:, 1]) * (self.boxes[:, 2] - self.boxes[:, 0])
sorted_idx = torch.argsort(area, descending=True)
self.segmentation = self.segmentation[sorted_idx]
self.boxes = self.boxes[sorted_idx].cpu()
def pre_process(self):
pass
def get_crop(self, idx: int, im):
assert idx < len(self)
box = self.boxes[idx]
im = crop_box(self.im, box)
mask = crop_box(self.segmentation[idx])
mask = mask == 0
return dict(img=im, mask=mask.float(), boxes=box)
def visualize(self, im):
if len(self) == 0:
return im
im = vis_utils.draw_mask(im.clone(), self.segmentation.logical_not())
return im
def __len__(self):
return self.n_detections
@staticmethod
def from_state_dict(state_dict, **kwargs):
numel = np.prod(state_dict["shape"])
arr = np.unpackbits(state_dict["segmentation"].numpy(), count=numel)
segmentation = tops.to_cuda(torch.from_numpy(arr)).view(state_dict["shape"])
return VehicleDetection(segmentation)
def state_dict(self, **kwargs):
segmentation = torch.from_numpy(np.packbits(self.segmentation.bool().cpu().numpy()))
return dict(segmentation=segmentation, cls=self.__class__, shape=self.segmentation.shape)
class FaceDetection:
def __init__(self,
boxes_ltrb: torch.LongTensor, target_imsize, fdf128_expand: bool,
keypoints: torch.Tensor = None,
**kwargs) -> None:
self.boxes = boxes_ltrb.cpu()
assert self.boxes.shape[1] == 4, self.boxes.shape
self.target_imsize = tuple(target_imsize)
# Sory by area to paste in largest faces last
area = (self.boxes[:, 2] - self.boxes[:, 0]) * (self.boxes[:, 3] - self.boxes[:, 1]).view(-1)
idx = area.argsort(descending=False)
self.boxes = self.boxes[idx]
self.fdf128_expand = fdf128_expand
self.orig_keypoints = keypoints
if keypoints is not None:
self.orig_keypoints = self.orig_keypoints[idx]
assert keypoints.shape == (len(boxes_ltrb), 17, 2) or \
keypoints.shape == (len(boxes_ltrb), 7, 2), keypoints.shape
def visualize(self, im):
if len(self) == 0:
return im
orig_device = im.device
for box in self.boxes:
simple_expand = False if self.fdf128_expand else True
e_box = torch.from_numpy(expand_bbox_fdf(box.numpy(), im.shape[-2:], simple_expand))
im = torchvision.utils.draw_bounding_boxes(im.cpu(), e_box[None], colors=(0, 0, 255), width=2)
im = torchvision.utils.draw_bounding_boxes(im.cpu(), self.boxes, colors=(255, 0, 0), width=2)
if self.orig_keypoints is not None:
im = vis_utils.draw_keypoints(im, self.orig_keypoints, radius=1)
return im.to(device=orig_device)
def get_crop(self, idx: int, im):
assert idx < len(self)
box = self.boxes[idx].numpy()
simple_expand = False if self.fdf128_expand else True
expanded_boxes = expand_bbox_fdf(box, im.shape[-2:], simple_expand)
im = cut_pad_resize(im, expanded_boxes, self.target_imsize, fdf_resize=True)
# Find the square mask corresponding to box.
box_mask = box.copy().astype(float)
box_mask[[0, 2]] -= expanded_boxes[0]
box_mask[[1, 3]] -= expanded_boxes[1]
width = expanded_boxes[2] - expanded_boxes[0]
resize_factor = self.target_imsize[0] / width
box_mask = (box_mask * resize_factor).astype(int)
mask = torch.ones((1, *self.target_imsize), device=im.device, dtype=torch.float32)
crop_box(mask, box_mask).fill_(0)
if self.orig_keypoints is None:
return dict(
img=im[None], mask=mask[None],
boxes=torch.from_numpy(expanded_boxes).view(1, -1))
keypoint = self.orig_keypoints[idx, :7, :2].clone()
keypoint[:, 0] -= expanded_boxes[0]
keypoint[:, 1] -= expanded_boxes[1]
w = expanded_boxes[2] - expanded_boxes[0]
keypoint /= w
keypoint = keypoint.clamp(0, 1)
return dict(
img=im[None], mask=mask[None],
boxes=torch.from_numpy(expanded_boxes).view(1, -1),
keypoints=keypoint[None])
def __len__(self):
return len(self.boxes)
@staticmethod
def from_state_dict(state_dict, **kwargs):
return FaceDetection(
state_dict["boxes"].cpu(),
keypoints=state_dict["orig_keypoints"] if "orig_keypoints" in state_dict else None,
**kwargs)
def state_dict(self, **kwargs):
return dict(
boxes=self.boxes,
cls=self.__class__,
orig_keypoints=self.orig_keypoints)
def pre_process(self):
pass
def remove_dilate_in_pad(mask: torch.Tensor, exp_box, orig_imshape):
"""
Dilation happens after padding, which could place dilation in the padded area.
Remove this.
"""
x0, y0, x1, y1 = exp_box
H, W = orig_imshape
# Padding in original image space
p_y0 = max(0, -y0)
p_y1 = max(y1 - H, 0)
p_x0 = max(0, -x0)
p_x1 = max(x1 - W, 0)
resize_ratio = mask.shape[-2] / (y1-y0)
p_x0, p_y0, p_x1, p_y1 = [(_*resize_ratio).floor().long() for _ in [p_x0, p_y0, p_x1, p_y1]]
mask[..., :p_y0, :] = 0
mask[..., :p_x0] = 0
mask[..., mask.shape[-2] - p_y1:, :] = 0
mask[..., mask.shape[-1] - p_x1:] = 0
class CSEPersonDetection:
def __init__(self,
segmentation, cse_dets,
target_imsize,
exp_bbox_cfg, exp_bbox_filter,
dilation_percentage: float,
embed_map: torch.Tensor,
orig_imshape_CHW,
normalize_embedding: bool) -> None:
self.segmentation = segmentation
self.cse_dets = cse_dets
self.target_imsize = list(target_imsize)
self.pre_processed = False
self.exp_bbox_cfg = exp_bbox_cfg
self.exp_bbox_filter = exp_bbox_filter
self.dilation_percentage = dilation_percentage
self.embed_map = embed_map
self.embed_map_cpu = embed_map.cpu()
self.normalize_embedding = normalize_embedding
if self.normalize_embedding:
embed_map_mean = self.embed_map.mean(dim=0, keepdim=True)
embed_map_rstd = ((self.embed_map - embed_map_mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt()
self.embed_map_normalized = (self.embed_map - embed_map_mean) * embed_map_rstd
self.orig_imshape_CHW = orig_imshape_CHW
@torch.no_grad()
def pre_process(self):
if self.pre_processed:
return
boxes = initialize_cse_boxes(self.segmentation, self.cse_dets["bbox_XYXY"]).cpu()
expanded_boxes = []
included_boxes = []
for i in range(len(boxes)):
exp_box = get_expanded_bbox(
boxes[i], self.orig_imshape_CHW[1:], self.segmentation[i], **self.exp_bbox_cfg,
target_aspect_ratio=self.target_imsize[0]/self.target_imsize[1])
if not include_box(exp_box, imshape=self.orig_imshape_CHW[1:], **self.exp_bbox_filter):
continue
included_boxes.append(i)
expanded_boxes.append(exp_box)
expanded_boxes = torch.LongTensor(expanded_boxes).view(-1, 4)
self.segmentation = self.segmentation[included_boxes]
self.cse_dets = {k: v[included_boxes] for k, v in self.cse_dets.items()}
self.mask = torch.empty((len(expanded_boxes), *self.target_imsize), device=tops.get_device(), dtype=torch.bool)
area = self.segmentation.sum(dim=[1, 2]).view(len(expanded_boxes))
for i, box in enumerate(expanded_boxes):
self.mask[i] = cut_pad_resize(self.segmentation[i:i+1], box, self.target_imsize)[0]
dilation_kernel = get_kernel(int((self.target_imsize[0]*self.target_imsize[1])**0.5*self.dilation_percentage))
self.maskrcnn_mask = self.mask.clone().logical_not()[:, None]
self.mask = utils.binary_dilation(self.mask[:, None], dilation_kernel)
for i in range(len(expanded_boxes)):
remove_dilate_in_pad(self.mask[i], expanded_boxes[i], self.orig_imshape_CHW[1:])
self.boxes = expanded_boxes.cpu()
self.dilated_boxes = get_dilated_boxes(self.boxes, self.mask)
self.pre_processed = True
self.n_detections = len(self.boxes)
self.mask = self.mask.logical_not()
E_mask = torch.zeros((self.n_detections, 1, *self.target_imsize), device=self.mask.device, dtype=torch.bool)
self.vertices = torch.zeros_like(E_mask, dtype=torch.long)
for i in range(self.n_detections):
E_, E_mask[i] = transform_embedding(
self.cse_dets["instance_embedding"][i],
self.cse_dets["instance_segmentation"][i],
self.boxes[i],
self.cse_dets["bbox_XYXY"][i].cpu(),
self.target_imsize
)
self.vertices[i] = utils.from_E_to_vertex(
E_[None], E_mask[i:i+1].logical_not(), self.embed_map).squeeze()[None]
self.E_mask = E_mask
sorted_idx = torch.argsort(area, descending=False)
self.mask = self.mask[sorted_idx]
self.boxes = self.boxes[sorted_idx.cpu()]
self.vertices = self.vertices[sorted_idx]
self.E_mask = self.E_mask[sorted_idx]
self.maskrcnn_mask = self.maskrcnn_mask[sorted_idx]
def get_crop(self, idx: int, im):
self.pre_process()
assert idx < len(self)
box = self.boxes[idx]
mask = self.mask[idx]
im = cut_pad_resize(im, box, self.target_imsize).unsqueeze(0)
vertices_ = self.vertices[idx]
E_mask_ = self.E_mask[idx].float()
if self.normalize_embedding:
embedding = self.embed_map_normalized[vertices_.squeeze(dim=0)].permute(2, 0, 1) * E_mask_
else:
embedding = self.embed_map[vertices_.squeeze(dim=0)].permute(2, 0, 1) * E_mask_
return dict(
img=im,
mask=mask.float()[None],
boxes=box.reshape(1, -1),
E_mask=E_mask_[None],
vertices=vertices_[None],
embed_map=self.embed_map,
embedding=embedding[None],
maskrcnn_mask=self.maskrcnn_mask[idx].float()[None]
)
def __len__(self):
self.pre_process()
return self.n_detections
def state_dict(self, after_preprocess=False):
"""
The processed annotations occupy more space than the original detections.
"""
if not after_preprocess:
return {
"combined_segmentation": self.segmentation.bool(),
"cse_instance_segmentation": self.cse_dets["instance_segmentation"].bool(),
"cse_instance_embedding": self.cse_dets["instance_embedding"],
"cse_bbox_XYXY": self.cse_dets["bbox_XYXY"].long(),
"cls": self.__class__,
"orig_imshape_CHW": self.orig_imshape_CHW
}
self.pre_process()
def compress_bool(x): return torch.from_numpy(np.packbits(x.bool().cpu().numpy()))
return dict(
E_mask=compress_bool(self.E_mask),
mask=compress_bool(self.mask),
maskrcnn_mask=compress_bool(self.maskrcnn_mask),
vertices=self.vertices.to(torch.int16).cpu(),
cls=self.__class__,
boxes=self.boxes,
orig_imshape_CHW=self.orig_imshape_CHW,
)
@staticmethod
def from_state_dict(
state_dict, embed_map,
post_process_cfg, **kwargs):
after_preprocess = "segmentation" not in state_dict and "combined_segmentation" not in state_dict
if after_preprocess:
detection = CSEPersonDetection(
segmentation=None, cse_dets=None, embed_map=embed_map,
orig_imshape_CHW=state_dict["orig_imshape_CHW"],
**post_process_cfg)
detection.vertices = tops.to_cuda(state_dict["vertices"].long())
numel = np.prod(detection.vertices.shape)
def unpack_bool(x):
x = torch.from_numpy(np.unpackbits(x.numpy(), count=numel))
return x.view(*detection.vertices.shape)
detection.E_mask = tops.to_cuda(unpack_bool(state_dict["E_mask"]))
detection.mask = tops.to_cuda(unpack_bool(state_dict["mask"]))
detection.maskrcnn_mask = tops.to_cuda(unpack_bool(state_dict["maskrcnn_mask"]))
detection.n_detections = len(detection.mask)
detection.pre_processed = True
if isinstance(state_dict["boxes"], np.ndarray):
state_dict["boxes"] = torch.from_numpy(state_dict["boxes"])
detection.boxes = state_dict["boxes"]
return detection
cse_dets = dict(
instance_segmentation=state_dict["cse_instance_segmentation"],
instance_embedding=state_dict["cse_instance_embedding"],
embed_map=embed_map,
bbox_XYXY=state_dict["cse_bbox_XYXY"])
cse_dets = {k: tops.to_cuda(v) for k, v in cse_dets.items()}
segmentation = state_dict["combined_segmentation"]
return CSEPersonDetection(
segmentation, cse_dets, embed_map=embed_map,
orig_imshape_CHW=state_dict["orig_imshape_CHW"],
**post_process_cfg)
def visualize(self, im):
self.pre_process()
if len(self) == 0:
return im
im = vis_utils.draw_cropped_masks(
im.cpu(), self.mask.cpu(), self.boxes, visualize_instances=False)
E = self.embed_map_cpu[self.vertices.long().cpu()].squeeze(1).permute(0, 3, 1, 2)
im = vis_utils.draw_cse_all(
E, self.E_mask.squeeze(1).bool().cpu(), im,
self.boxes, self.embed_map_cpu)
im = torchvision.utils.draw_bounding_boxes(im, self.boxes, colors=(255, 0, 0), width=2)
return im
def shift_and_preprocess_keypoints(keypoints: torch.Tensor, boxes):
keypoints = keypoints.clone()
N = boxes.shape[0]
tops.assert_shape(keypoints, (N, None, 3))
tops.assert_shape(boxes, (N, 4))
x0, y0, x1, y1 = [_.view(-1, 1) for _ in boxes.T]
w = x1 - x0
h = y1 - y0
keypoints[:, :, 0] = (keypoints[:, :, 0] - x0) / w
keypoints[:, :, 1] = (keypoints[:, :, 1] - y0) / h
def check_outside(x): return (x < 0).logical_or(x > 1)
is_outside = check_outside(keypoints[:, :, 0]).logical_or(check_outside(keypoints[:, :, 1]))
keypoints[:, :, 2] = keypoints[:, :, 2] > 0
keypoints[:, :, 2] = (keypoints[:, :, 2] > 0).logical_and(is_outside.logical_not())
return keypoints
class PersonDetection:
def __init__(
self,
segmentation,
target_imsize,
exp_bbox_cfg, exp_bbox_filter,
dilation_percentage: float,
orig_imshape_CHW,
kp_vis_thr=None,
keypoints=None,
**kwargs) -> None:
self.segmentation = segmentation
self.target_imsize = list(target_imsize)
self.pre_processed = False
self.exp_bbox_cfg = exp_bbox_cfg
self.exp_bbox_filter = exp_bbox_filter
self.dilation_percentage = dilation_percentage
self.orig_imshape_CHW = orig_imshape_CHW
self.orig_keypoints = keypoints
if keypoints is not None:
assert kp_vis_thr is not None
self.kp_vis_thr = kp_vis_thr
@torch.no_grad()
def pre_process(self):
if self.pre_processed:
return
boxes = masks_to_boxes(self.segmentation).cpu()
expanded_boxes = []
included_boxes = []
for i in range(len(boxes)):
exp_box = get_expanded_bbox(
boxes[i], self.orig_imshape_CHW[1:], self.segmentation[i], **self.exp_bbox_cfg,
target_aspect_ratio=self.target_imsize[0]/self.target_imsize[1])
if not include_box(exp_box, imshape=self.orig_imshape_CHW[1:], **self.exp_bbox_filter):
continue
included_boxes.append(i)
expanded_boxes.append(exp_box)
expanded_boxes = torch.LongTensor(expanded_boxes).view(-1, 4)
self.segmentation = self.segmentation[included_boxes]
if self.orig_keypoints is not None:
self.keypoints = self.orig_keypoints[included_boxes].clone()
self.keypoints[:, :, 2] = self.keypoints[:, :, 2] >= self.kp_vis_thr
area = self.segmentation.sum(dim=[1, 2]).view(len(expanded_boxes)).cpu()
self.mask = torch.empty((len(expanded_boxes), *self.target_imsize), device=tops.get_device(), dtype=torch.bool)
for i, box in enumerate(expanded_boxes):
self.mask[i] = cut_pad_resize(self.segmentation[i:i+1], box, self.target_imsize)[0]
if self.orig_keypoints is not None:
self.keypoints = shift_and_preprocess_keypoints(self.keypoints, expanded_boxes)
dilation_kernel = get_kernel(int((self.target_imsize[0]*self.target_imsize[1])**0.5*self.dilation_percentage))
self.maskrcnn_mask = self.mask.clone().logical_not()[:, None]
self.mask = utils.binary_dilation(self.mask[:, None], dilation_kernel)
for i in range(len(expanded_boxes)):
remove_dilate_in_pad(self.mask[i], expanded_boxes[i], self.orig_imshape_CHW[1:])
self.boxes = expanded_boxes
self.dilated_boxes = get_dilated_boxes(self.boxes, self.mask)
self.pre_processed = True
self.n_detections = len(self.boxes)
self.mask = self.mask.logical_not()
sorted_idx = torch.argsort(area, descending=False)
self.mask = self.mask[sorted_idx]
self.boxes = self.boxes[sorted_idx.cpu()]
self.segmentation = self.segmentation[sorted_idx]
self.maskrcnn_mask = self.maskrcnn_mask[sorted_idx]
if self.keypoints is not None:
self.keypoints = self.keypoints[sorted_idx.cpu()]
def get_crop(self, idx: int, im: torch.Tensor):
assert idx < len(self)
self.pre_process()
box = self.boxes[idx]
mask = self.mask[idx][None].float()
im = cut_pad_resize(im, box, self.target_imsize).unsqueeze(0)
batch = dict(
img=im, mask=mask, boxes=box.reshape(1, -1),
maskrcnn_mask=self.maskrcnn_mask[idx][None].float())
if self.keypoints is not None:
batch["keypoints"] = self.keypoints[idx:idx+1]
return batch
def __len__(self):
self.pre_process()
return self.n_detections
def state_dict(self, **kwargs):
return dict(
segmentation=self.segmentation.bool(),
cls=self.__class__,
orig_imshape_CHW=self.orig_imshape_CHW,
keypoints=self.orig_keypoints
)
@staticmethod
def from_state_dict(
state_dict,
post_process_cfg, **kwargs):
return PersonDetection(
state_dict["segmentation"],
orig_imshape_CHW=state_dict["orig_imshape_CHW"],
**post_process_cfg,
keypoints=state_dict["keypoints"])
def visualize(self, im):
self.pre_process()
im = im.cpu()
if len(self) == 0:
return im
im = vis_utils.draw_cropped_masks(im.clone(), self.mask.cpu(), self.boxes, visualize_instances=False)
if self.keypoints is not None:
im = vis_utils.draw_cropped_keypoints(im, self.keypoints, self.boxes)
return im
def get_dilated_boxes(exp_bbox: torch.LongTensor, mask):
"""
mask: resized mask
"""
assert exp_bbox.shape[0] == mask.shape[0]
boxes = masks_to_boxes(mask.squeeze(1)).cpu()
H, W = exp_bbox[:, 3] - exp_bbox[:, 1], exp_bbox[:, 2] - exp_bbox[:, 0]
boxes[:, [0, 2]] = (boxes[:, [0, 2]] * W[:, None] / mask.shape[-1]).long()
boxes[:, [1, 3]] = (boxes[:, [1, 3]] * H[:, None] / mask.shape[-2]).long()
boxes[:, [0, 2]] += exp_bbox[:, 0:1]
boxes[:, [1, 3]] += exp_bbox[:, 1:2]
return boxes
|