File size: 20,876 Bytes
97a6728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
import torch
import numpy as np
from dp2 import utils
from dp2.utils import vis_utils, crop_box
from .utils import (
    cut_pad_resize, masks_to_boxes,
    get_kernel, transform_embedding, initialize_cse_boxes
)
from .box_utils import get_expanded_bbox, include_box
import torchvision
import tops
from .box_utils_fdf import expand_bbox as expand_bbox_fdf


class VehicleDetection:

    def __init__(self, segmentation: torch.BoolTensor) -> None:
        self.segmentation = segmentation
        self.boxes = masks_to_boxes(segmentation)
        assert self.boxes.shape[1] == 4, self.boxes.shape
        self.n_detections = self.segmentation.shape[0]
        area = (self.boxes[:, 3] - self.boxes[:, 1]) * (self.boxes[:, 2] - self.boxes[:, 0])

        sorted_idx = torch.argsort(area, descending=True)
        self.segmentation = self.segmentation[sorted_idx]
        self.boxes = self.boxes[sorted_idx].cpu()

    def pre_process(self):
        pass

    def get_crop(self, idx: int, im):
        assert idx < len(self)
        box = self.boxes[idx]
        im = crop_box(self.im, box)
        mask = crop_box(self.segmentation[idx])
        mask = mask == 0
        return dict(img=im, mask=mask.float(), boxes=box)

    def visualize(self, im):
        if len(self) == 0:
            return im
        im = vis_utils.draw_mask(im.clone(), self.segmentation.logical_not())
        return im

    def __len__(self):
        return self.n_detections

    @staticmethod
    def from_state_dict(state_dict, **kwargs):
        numel = np.prod(state_dict["shape"])
        arr = np.unpackbits(state_dict["segmentation"].numpy(), count=numel)
        segmentation = tops.to_cuda(torch.from_numpy(arr)).view(state_dict["shape"])
        return VehicleDetection(segmentation)

    def state_dict(self, **kwargs):
        segmentation = torch.from_numpy(np.packbits(self.segmentation.bool().cpu().numpy()))
        return dict(segmentation=segmentation, cls=self.__class__, shape=self.segmentation.shape)


class FaceDetection:

    def __init__(self,
                 boxes_ltrb: torch.LongTensor, target_imsize, fdf128_expand: bool,
                 keypoints: torch.Tensor = None,
                 **kwargs) -> None:

        self.boxes = boxes_ltrb.cpu()
        assert self.boxes.shape[1] == 4, self.boxes.shape
        self.target_imsize = tuple(target_imsize)
        # Sory by area to paste in largest faces last
        area = (self.boxes[:, 2] - self.boxes[:, 0]) * (self.boxes[:, 3] - self.boxes[:, 1]).view(-1)
        idx = area.argsort(descending=False)
        self.boxes = self.boxes[idx]
        self.fdf128_expand = fdf128_expand
        self.orig_keypoints = keypoints
        if keypoints is not None:
            self.orig_keypoints = self.orig_keypoints[idx]
            assert keypoints.shape == (len(boxes_ltrb), 17, 2) or \
                keypoints.shape == (len(boxes_ltrb), 7, 2), keypoints.shape

    def visualize(self, im):
        if len(self) == 0:
            return im
        orig_device = im.device
        for box in self.boxes:
            simple_expand = False if self.fdf128_expand else True
            e_box = torch.from_numpy(expand_bbox_fdf(box.numpy(), im.shape[-2:], simple_expand))
            im = torchvision.utils.draw_bounding_boxes(im.cpu(), e_box[None], colors=(0, 0, 255), width=2)
        im = torchvision.utils.draw_bounding_boxes(im.cpu(), self.boxes, colors=(255, 0, 0), width=2)
        if self.orig_keypoints is not None:
            im = vis_utils.draw_keypoints(im, self.orig_keypoints, radius=1)

        return im.to(device=orig_device)

    def get_crop(self, idx: int, im):
        assert idx < len(self)
        box = self.boxes[idx].numpy()
        simple_expand = False if self.fdf128_expand else True
        expanded_boxes = expand_bbox_fdf(box, im.shape[-2:], simple_expand)
        im = cut_pad_resize(im, expanded_boxes, self.target_imsize, fdf_resize=True)

        # Find the square mask corresponding to box.
        box_mask = box.copy().astype(float)
        box_mask[[0, 2]] -= expanded_boxes[0]
        box_mask[[1, 3]] -= expanded_boxes[1]

        width = expanded_boxes[2] - expanded_boxes[0]
        resize_factor = self.target_imsize[0] / width
        box_mask = (box_mask * resize_factor).astype(int)
        mask = torch.ones((1, *self.target_imsize), device=im.device, dtype=torch.float32)
        crop_box(mask, box_mask).fill_(0)
        if self.orig_keypoints is None:
            return dict(
                img=im[None], mask=mask[None],
                boxes=torch.from_numpy(expanded_boxes).view(1, -1))

        keypoint = self.orig_keypoints[idx, :7, :2].clone()
        keypoint[:, 0] -= expanded_boxes[0]
        keypoint[:, 1] -= expanded_boxes[1]
        w = expanded_boxes[2] - expanded_boxes[0]
        keypoint /= w
        keypoint = keypoint.clamp(0, 1)
        return dict(
            img=im[None], mask=mask[None],
            boxes=torch.from_numpy(expanded_boxes).view(1, -1),
            keypoints=keypoint[None])

    def __len__(self):
        return len(self.boxes)

    @staticmethod
    def from_state_dict(state_dict, **kwargs):
        return FaceDetection(
            state_dict["boxes"].cpu(),
            keypoints=state_dict["orig_keypoints"] if "orig_keypoints" in state_dict else None,
            **kwargs)

    def state_dict(self, **kwargs):
        return dict(
            boxes=self.boxes,
            cls=self.__class__,
            orig_keypoints=self.orig_keypoints)

    def pre_process(self):
        pass


def remove_dilate_in_pad(mask: torch.Tensor, exp_box, orig_imshape):
    """
    Dilation happens after padding, which could place dilation in the padded area.
    Remove this.
    """
    x0, y0, x1, y1 = exp_box
    H, W = orig_imshape
    # Padding in original image space
    p_y0 = max(0, -y0)
    p_y1 = max(y1 - H, 0)
    p_x0 = max(0, -x0)
    p_x1 = max(x1 - W, 0)
    resize_ratio = mask.shape[-2] / (y1-y0)
    p_x0, p_y0, p_x1, p_y1 = [(_*resize_ratio).floor().long() for _ in [p_x0, p_y0, p_x1, p_y1]]
    mask[..., :p_y0, :] = 0
    mask[..., :p_x0] = 0
    mask[..., mask.shape[-2] - p_y1:, :] = 0
    mask[..., mask.shape[-1] - p_x1:] = 0


class CSEPersonDetection:

    def __init__(self,
                 segmentation, cse_dets,
                 target_imsize,
                 exp_bbox_cfg, exp_bbox_filter,
                 dilation_percentage: float,
                 embed_map: torch.Tensor,
                 orig_imshape_CHW,
                 normalize_embedding: bool) -> None:
        self.segmentation = segmentation
        self.cse_dets = cse_dets
        self.target_imsize = list(target_imsize)
        self.pre_processed = False
        self.exp_bbox_cfg = exp_bbox_cfg
        self.exp_bbox_filter = exp_bbox_filter
        self.dilation_percentage = dilation_percentage
        self.embed_map = embed_map
        self.embed_map_cpu = embed_map.cpu()
        self.normalize_embedding = normalize_embedding
        if self.normalize_embedding:
            embed_map_mean = self.embed_map.mean(dim=0, keepdim=True)
            embed_map_rstd = ((self.embed_map - embed_map_mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt()
            self.embed_map_normalized = (self.embed_map - embed_map_mean) * embed_map_rstd
        self.orig_imshape_CHW = orig_imshape_CHW

    @torch.no_grad()
    def pre_process(self):
        if self.pre_processed:
            return
        boxes = initialize_cse_boxes(self.segmentation, self.cse_dets["bbox_XYXY"]).cpu()
        expanded_boxes = []
        included_boxes = []
        for i in range(len(boxes)):
            exp_box = get_expanded_bbox(
                boxes[i], self.orig_imshape_CHW[1:], self.segmentation[i], **self.exp_bbox_cfg,
                target_aspect_ratio=self.target_imsize[0]/self.target_imsize[1])
            if not include_box(exp_box, imshape=self.orig_imshape_CHW[1:], **self.exp_bbox_filter):
                continue
            included_boxes.append(i)
            expanded_boxes.append(exp_box)
        expanded_boxes = torch.LongTensor(expanded_boxes).view(-1, 4)
        self.segmentation = self.segmentation[included_boxes]
        self.cse_dets = {k: v[included_boxes] for k, v in self.cse_dets.items()}

        self.mask = torch.empty((len(expanded_boxes), *self.target_imsize), device=tops.get_device(), dtype=torch.bool)
        area = self.segmentation.sum(dim=[1, 2]).view(len(expanded_boxes))
        for i, box in enumerate(expanded_boxes):
            self.mask[i] = cut_pad_resize(self.segmentation[i:i+1], box, self.target_imsize)[0]

        dilation_kernel = get_kernel(int((self.target_imsize[0]*self.target_imsize[1])**0.5*self.dilation_percentage))
        self.maskrcnn_mask = self.mask.clone().logical_not()[:, None]
        self.mask = utils.binary_dilation(self.mask[:, None], dilation_kernel)
        for i in range(len(expanded_boxes)):
            remove_dilate_in_pad(self.mask[i], expanded_boxes[i], self.orig_imshape_CHW[1:])
        self.boxes = expanded_boxes.cpu()
        self.dilated_boxes = get_dilated_boxes(self.boxes, self.mask)

        self.pre_processed = True
        self.n_detections = len(self.boxes)
        self.mask = self.mask.logical_not()

        E_mask = torch.zeros((self.n_detections, 1, *self.target_imsize), device=self.mask.device, dtype=torch.bool)
        self.vertices = torch.zeros_like(E_mask,  dtype=torch.long)
        for i in range(self.n_detections):
            E_, E_mask[i] = transform_embedding(
                self.cse_dets["instance_embedding"][i],
                self.cse_dets["instance_segmentation"][i],
                self.boxes[i],
                self.cse_dets["bbox_XYXY"][i].cpu(),
                self.target_imsize
            )
            self.vertices[i] = utils.from_E_to_vertex(
                E_[None], E_mask[i:i+1].logical_not(), self.embed_map).squeeze()[None]
        self.E_mask = E_mask

        sorted_idx = torch.argsort(area, descending=False)
        self.mask = self.mask[sorted_idx]
        self.boxes = self.boxes[sorted_idx.cpu()]
        self.vertices = self.vertices[sorted_idx]
        self.E_mask = self.E_mask[sorted_idx]
        self.maskrcnn_mask = self.maskrcnn_mask[sorted_idx]

    def get_crop(self, idx: int, im):
        self.pre_process()
        assert idx < len(self)
        box = self.boxes[idx]
        mask = self.mask[idx]
        im = cut_pad_resize(im, box, self.target_imsize).unsqueeze(0)

        vertices_ = self.vertices[idx]
        E_mask_ = self.E_mask[idx].float()
        if self.normalize_embedding:
            embedding = self.embed_map_normalized[vertices_.squeeze(dim=0)].permute(2, 0, 1) * E_mask_
        else:
            embedding = self.embed_map[vertices_.squeeze(dim=0)].permute(2, 0, 1) * E_mask_

        return dict(
            img=im,
            mask=mask.float()[None],
            boxes=box.reshape(1, -1),
            E_mask=E_mask_[None],
            vertices=vertices_[None],
            embed_map=self.embed_map,
            embedding=embedding[None],
            maskrcnn_mask=self.maskrcnn_mask[idx].float()[None]
        )

    def __len__(self):
        self.pre_process()
        return self.n_detections

    def state_dict(self, after_preprocess=False):
        """
            The processed annotations occupy more space than the original detections.
        """
        if not after_preprocess:
            return {
                "combined_segmentation": self.segmentation.bool(),
                "cse_instance_segmentation": self.cse_dets["instance_segmentation"].bool(),
                "cse_instance_embedding": self.cse_dets["instance_embedding"],
                "cse_bbox_XYXY": self.cse_dets["bbox_XYXY"].long(),
                "cls": self.__class__,
                "orig_imshape_CHW": self.orig_imshape_CHW
            }
        self.pre_process()
        def compress_bool(x): return torch.from_numpy(np.packbits(x.bool().cpu().numpy()))
        return dict(
            E_mask=compress_bool(self.E_mask),
            mask=compress_bool(self.mask),
            maskrcnn_mask=compress_bool(self.maskrcnn_mask),
            vertices=self.vertices.to(torch.int16).cpu(),
            cls=self.__class__,
            boxes=self.boxes,
            orig_imshape_CHW=self.orig_imshape_CHW,
        )

    @staticmethod
    def from_state_dict(
            state_dict, embed_map,
            post_process_cfg, **kwargs):
        after_preprocess = "segmentation" not in state_dict and "combined_segmentation" not in state_dict
        if after_preprocess:
            detection = CSEPersonDetection(
                segmentation=None, cse_dets=None, embed_map=embed_map,
                orig_imshape_CHW=state_dict["orig_imshape_CHW"],
                **post_process_cfg)
            detection.vertices = tops.to_cuda(state_dict["vertices"].long())
            numel = np.prod(detection.vertices.shape)

            def unpack_bool(x):
                x = torch.from_numpy(np.unpackbits(x.numpy(), count=numel))
                return x.view(*detection.vertices.shape)
            detection.E_mask = tops.to_cuda(unpack_bool(state_dict["E_mask"]))
            detection.mask = tops.to_cuda(unpack_bool(state_dict["mask"]))
            detection.maskrcnn_mask = tops.to_cuda(unpack_bool(state_dict["maskrcnn_mask"]))
            detection.n_detections = len(detection.mask)
            detection.pre_processed = True

            if isinstance(state_dict["boxes"], np.ndarray):
                state_dict["boxes"] = torch.from_numpy(state_dict["boxes"])
            detection.boxes = state_dict["boxes"]
            return detection

        cse_dets = dict(
            instance_segmentation=state_dict["cse_instance_segmentation"],
            instance_embedding=state_dict["cse_instance_embedding"],
            embed_map=embed_map,
            bbox_XYXY=state_dict["cse_bbox_XYXY"])
        cse_dets = {k: tops.to_cuda(v) for k, v in cse_dets.items()}

        segmentation = state_dict["combined_segmentation"]
        return CSEPersonDetection(
            segmentation, cse_dets, embed_map=embed_map,
            orig_imshape_CHW=state_dict["orig_imshape_CHW"],
            **post_process_cfg)

    def visualize(self, im):
        self.pre_process()
        if len(self) == 0:
            return im
        im = vis_utils.draw_cropped_masks(
            im.cpu(), self.mask.cpu(), self.boxes, visualize_instances=False)
        E = self.embed_map_cpu[self.vertices.long().cpu()].squeeze(1).permute(0, 3, 1, 2)
        im = vis_utils.draw_cse_all(
            E, self.E_mask.squeeze(1).bool().cpu(), im,
            self.boxes, self.embed_map_cpu)
        im = torchvision.utils.draw_bounding_boxes(im, self.boxes, colors=(255, 0, 0), width=2)
        return im


def shift_and_preprocess_keypoints(keypoints: torch.Tensor, boxes):
    keypoints = keypoints.clone()
    N = boxes.shape[0]
    tops.assert_shape(keypoints, (N, None, 3))
    tops.assert_shape(boxes, (N, 4))
    x0, y0, x1, y1 = [_.view(-1, 1) for _ in boxes.T]

    w = x1 - x0
    h = y1 - y0
    keypoints[:, :, 0] = (keypoints[:, :, 0] - x0) / w
    keypoints[:, :, 1] = (keypoints[:, :, 1] - y0) / h
    def check_outside(x): return (x < 0).logical_or(x > 1)
    is_outside = check_outside(keypoints[:, :,  0]).logical_or(check_outside(keypoints[:, :,  1]))
    keypoints[:, :, 2] = keypoints[:, :, 2] > 0
    keypoints[:, :,  2] = (keypoints[:, :,  2] > 0).logical_and(is_outside.logical_not())
    return keypoints


class PersonDetection:

    def __init__(
            self,
            segmentation,
            target_imsize,
            exp_bbox_cfg, exp_bbox_filter,
            dilation_percentage: float,
            orig_imshape_CHW,
            kp_vis_thr=None,
            keypoints=None,
            **kwargs) -> None:
        self.segmentation = segmentation
        self.target_imsize = list(target_imsize)
        self.pre_processed = False
        self.exp_bbox_cfg = exp_bbox_cfg
        self.exp_bbox_filter = exp_bbox_filter
        self.dilation_percentage = dilation_percentage
        self.orig_imshape_CHW = orig_imshape_CHW
        self.orig_keypoints = keypoints
        if keypoints is not None:
            assert kp_vis_thr is not None
            self.kp_vis_thr = kp_vis_thr

    @torch.no_grad()
    def pre_process(self):
        if self.pre_processed:
            return
        boxes = masks_to_boxes(self.segmentation).cpu()
        expanded_boxes = []
        included_boxes = []
        for i in range(len(boxes)):
            exp_box = get_expanded_bbox(
                boxes[i], self.orig_imshape_CHW[1:], self.segmentation[i], **self.exp_bbox_cfg,
                target_aspect_ratio=self.target_imsize[0]/self.target_imsize[1])
            if not include_box(exp_box, imshape=self.orig_imshape_CHW[1:], **self.exp_bbox_filter):
                continue
            included_boxes.append(i)
            expanded_boxes.append(exp_box)
        expanded_boxes = torch.LongTensor(expanded_boxes).view(-1, 4)
        self.segmentation = self.segmentation[included_boxes]
        if self.orig_keypoints is not None:
            self.keypoints = self.orig_keypoints[included_boxes].clone()
            self.keypoints[:, :, 2] = self.keypoints[:, :, 2] >= self.kp_vis_thr
        area = self.segmentation.sum(dim=[1, 2]).view(len(expanded_boxes)).cpu()
        self.mask = torch.empty((len(expanded_boxes), *self.target_imsize), device=tops.get_device(), dtype=torch.bool)
        for i, box in enumerate(expanded_boxes):
            self.mask[i] = cut_pad_resize(self.segmentation[i:i+1], box, self.target_imsize)[0]
        if self.orig_keypoints is not None:
            self.keypoints = shift_and_preprocess_keypoints(self.keypoints, expanded_boxes)
        dilation_kernel = get_kernel(int((self.target_imsize[0]*self.target_imsize[1])**0.5*self.dilation_percentage))
        self.maskrcnn_mask = self.mask.clone().logical_not()[:, None]
        self.mask = utils.binary_dilation(self.mask[:, None], dilation_kernel)
        for i in range(len(expanded_boxes)):
            remove_dilate_in_pad(self.mask[i], expanded_boxes[i], self.orig_imshape_CHW[1:])
        self.boxes = expanded_boxes
        self.dilated_boxes = get_dilated_boxes(self.boxes, self.mask)

        self.pre_processed = True
        self.n_detections = len(self.boxes)
        self.mask = self.mask.logical_not()

        sorted_idx = torch.argsort(area, descending=False)
        self.mask = self.mask[sorted_idx]
        self.boxes = self.boxes[sorted_idx.cpu()]
        self.segmentation = self.segmentation[sorted_idx]
        self.maskrcnn_mask = self.maskrcnn_mask[sorted_idx]
        if self.keypoints is not None:
            self.keypoints = self.keypoints[sorted_idx.cpu()]

    def get_crop(self, idx: int, im: torch.Tensor):
        assert idx < len(self)
        self.pre_process()
        box = self.boxes[idx]
        mask = self.mask[idx][None].float()
        im = cut_pad_resize(im, box, self.target_imsize).unsqueeze(0)
        batch = dict(
            img=im, mask=mask, boxes=box.reshape(1, -1),
            maskrcnn_mask=self.maskrcnn_mask[idx][None].float())
        if self.keypoints is not None:
            batch["keypoints"] = self.keypoints[idx:idx+1]
        return batch

    def __len__(self):
        self.pre_process()
        return self.n_detections

    def state_dict(self, **kwargs):
        return dict(
            segmentation=self.segmentation.bool(),
            cls=self.__class__,
            orig_imshape_CHW=self.orig_imshape_CHW,
            keypoints=self.orig_keypoints
        )

    @staticmethod
    def from_state_dict(
            state_dict,
            post_process_cfg, **kwargs):
        return PersonDetection(
            state_dict["segmentation"],
            orig_imshape_CHW=state_dict["orig_imshape_CHW"],
            **post_process_cfg,
            keypoints=state_dict["keypoints"])

    def visualize(self, im):
        self.pre_process()
        im = im.cpu()
        if len(self) == 0:
            return im
        im = vis_utils.draw_cropped_masks(im.clone(), self.mask.cpu(), self.boxes, visualize_instances=False)
        if self.keypoints is not None:
            im = vis_utils.draw_cropped_keypoints(im, self.keypoints, self.boxes)
        return im


def get_dilated_boxes(exp_bbox: torch.LongTensor, mask):
    """
        mask: resized mask
    """
    assert exp_bbox.shape[0] == mask.shape[0]
    boxes = masks_to_boxes(mask.squeeze(1)).cpu()
    H, W = exp_bbox[:, 3] - exp_bbox[:, 1], exp_bbox[:, 2] - exp_bbox[:, 0]
    boxes[:, [0, 2]] = (boxes[:, [0, 2]] * W[:, None] / mask.shape[-1]).long()
    boxes[:, [1, 3]] = (boxes[:, [1, 3]] * H[:, None] / mask.shape[-2]).long()
    boxes[:, [0, 2]] += exp_bbox[:, 0:1]
    boxes[:, [1, 3]] += exp_bbox[:, 1:2]
    return boxes