File size: 5,361 Bytes
548d634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pickle
import torchvision
import torch
import pathlib
import numpy as np
from typing import Callable, Optional, Union
from torch.hub import get_dir as get_hub_dir


def cache_embed_stats(embed_map: torch.Tensor):
    mean = embed_map.mean(dim=0, keepdim=True)
    rstd = ((embed_map - mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt()

    cache = dict(mean=mean, rstd=rstd, embed_map=embed_map)
    path = pathlib.Path(get_hub_dir(), f"embed_map_stats.torch")
    path.parent.mkdir(exist_ok=True, parents=True)
    torch.save(cache, path)


class CocoCSE(torch.utils.data.Dataset):

    def __init__(self,
                 dirpath: Union[str, pathlib.Path],
                 transform: Optional[Callable],
                 normalize_E: bool,):
        dirpath = pathlib.Path(dirpath)
        self.dirpath = dirpath

        self.transform = transform
        assert self.dirpath.is_dir(),\
            f"Did not find dataset at: {dirpath}"
        self.image_paths, self.embedding_paths = self._load_impaths()
        self.embed_map = torch.from_numpy(np.load(self.dirpath.joinpath("embed_map.npy")))
        mean = self.embed_map.mean(dim=0, keepdim=True)
        rstd = ((self.embed_map - mean).square().mean(dim=0, keepdim=True)+1e-8).rsqrt()
        self.embed_map = (self.embed_map - mean) * rstd
        cache_embed_stats(self.embed_map)

    def _load_impaths(self):
        image_dir = self.dirpath.joinpath("images")
        image_paths = list(image_dir.glob("*.png"))
        image_paths.sort()
        embedding_paths = [
            self.dirpath.joinpath("embedding", x.stem + ".npy") for x in image_paths
            ]
        return image_paths, embedding_paths

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        im = torchvision.io.read_image(str(self.image_paths[idx]))
        vertices, mask, border = np.split(np.load(self.embedding_paths[idx]), 3, axis=-1)
        vertices = torch.from_numpy(vertices.squeeze()).long()
        mask = torch.from_numpy(mask.squeeze()).float()
        border = torch.from_numpy(border.squeeze()).float()
        E_mask = 1 - mask - border
        batch = {
            "img": im,
            "vertices": vertices[None],
            "mask": mask[None],
            "embed_map": self.embed_map,
            "border": border[None],
            "E_mask": E_mask[None]
        }
        if self.transform is None:
            return batch
        return self.transform(batch)


class CocoCSEWithFace(CocoCSE):

    def __init__(self,
                 dirpath: Union[str, pathlib.Path],
                 transform: Optional[Callable],
                 **kwargs):
        super().__init__(dirpath, transform, **kwargs)
        with open(self.dirpath.joinpath("face_boxes_XYXY.pickle"), "rb") as fp:
            self.face_boxes = pickle.load(fp)

    def __getitem__(self, idx):
        item = super().__getitem__(idx)
        item["boxes_XYXY"] = self.face_boxes[self.image_paths[idx].name]
        return item


class CocoCSESemantic(torch.utils.data.Dataset):

    def __init__(self,
                 dirpath: Union[str, pathlib.Path],
                 transform: Optional[Callable],
                 **kwargs):
        dirpath = pathlib.Path(dirpath)
        self.dirpath = dirpath

        self.transform = transform
        assert self.dirpath.is_dir(),\
            f"Did not find dataset at: {dirpath}"
        self.image_paths, self.embedding_paths = self._load_impaths()
        self.vertx2cat = torch.from_numpy(np.load(self.dirpath.parent.joinpath("vertx2cat.npy")))
        self.embed_map = torch.from_numpy(np.load(self.dirpath.joinpath("embed_map.npy")))

    def _load_impaths(self):
        image_dir = self.dirpath.joinpath("images")
        image_paths = list(image_dir.glob("*.png"))
        image_paths.sort()
        embedding_paths = [
            self.dirpath.joinpath("embedding", x.stem + ".npy") for x in image_paths
            ]
        return image_paths, embedding_paths

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        im = torchvision.io.read_image(str(self.image_paths[idx]))
        vertices, mask, border = np.split(np.load(self.embedding_paths[idx]), 3, axis=-1)
        vertices = torch.from_numpy(vertices.squeeze()).long()
        mask = torch.from_numpy(mask.squeeze()).float()
        border = torch.from_numpy(border.squeeze()).float()
        E_mask = 1 - mask - border
        batch = {
            "img": im,
            "vertices": vertices[None],
            "mask": mask[None],
            "border": border[None],
            "vertx2cat": self.vertx2cat,
            "embed_map": self.embed_map,
        }
        if self.transform is None:
            return batch
        return self.transform(batch)


class CocoCSESemanticWithFace(CocoCSESemantic):

    def __init__(self,
                 dirpath: Union[str, pathlib.Path],
                 transform: Optional[Callable],
                 **kwargs):
        super().__init__(dirpath, transform, **kwargs)
        with open(self.dirpath.joinpath("face_boxes_XYXY.pickle"), "rb") as fp:
            self.face_boxes = pickle.load(fp)

    def __getitem__(self, idx):
        item = super().__getitem__(idx)
        item["boxes_XYXY"] = self.face_boxes[self.image_paths[idx].name]
        return item