Spaces:
Runtime error
Runtime error
File size: 10,275 Bytes
415d841 ba7275c 415d841 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
os.system("pip install --upgrade pip")
os.system("pip install git+https://github.com/hukkelas/deep_privacy2@36c2c843cfd3022ebc100e9f8579fb2b82f8bde6")
from collections import defaultdict
import gradio
import numpy as np
import torch
import cv2
from PIL import Image
from dp2 import utils
from tops.config import instantiate
import tops
import gradio.inputs
from stylemc import get_and_cache_direction, get_styles
class GuidedDemo:
def __init__(self, face_anonymizer, cfg_face) -> None:
self.anonymizer = face_anonymizer
assert sum([x is not None for x in list(face_anonymizer.generators.values())]) == 1
self.generator = [x for x in list(face_anonymizer.generators.values()) if x is not None][0]
face_G_cfg = utils.load_config(cfg_face.anonymizer.face_G_cfg)
face_G_cfg.train.batch_size = 1
self.dl = instantiate(face_G_cfg.data.val.loader)
self.cache_dir = face_G_cfg.output_dir
self.precompute_edits()
def precompute_edits(self):
self.precomputed_edits = set()
for edit in self.precomputed_edits:
get_and_cache_direction(self.cache_dir, self.dl, self.generator, edit)
if self.cache_dir.joinpath("stylemc_cache").is_dir():
for path in self.cache_dir.joinpath("stylemc_cache").iterdir():
text_prompt = path.stem.replace("_", " ")
self.precomputed_edits.add(text_prompt)
print(text_prompt)
self.edits = defaultdict(defaultdict)
def anonymize(self, img, show_boxes: bool, current_box_idx: int, current_styles, current_boxes, update_identity, edits, cache_id=None):
if not isinstance(img, torch.Tensor):
img, cache_id = pil2torch(img)
img = tops.to_cuda(img)
current_box_idx = current_box_idx % len(current_boxes)
edited_styles = [s.clone() for s in current_styles]
for face_idx, face_edits in edits.items():
for prompt, strength in face_edits.items():
direction = get_and_cache_direction(self.cache_dir, self.dl, self.generator, prompt)
edited_styles[int(face_idx)] += direction * strength
update_identity[int(face_idx)] = True
assert img.dtype == torch.uint8
img = self.anonymizer(
img, truncation_value=0,
multi_modal_truncation=True, amp=True,
cache_id=cache_id,
all_styles=edited_styles,
update_identity=update_identity)
update_identity = [True for i in range(len(update_identity))]
img = utils.im2numpy(img)
if show_boxes:
x0, y0, x1, y1 = [int(_) for _ in current_boxes[int(current_box_idx)]]
img = cv2.rectangle(img, (x0, y0), (x1, y1), (255, 0, 0), 1)
return img, update_identity
def update_image(self, img, show_boxes):
img, cache_id = pil2torch(img)
img = tops.to_cuda(img)
det = self.anonymizer.detector.forward_and_cache(img, cache_id, load_cache=True)[0]
current_styles = []
for i in range(len(det)):
s = get_styles(
np.random.randint(0, 999999),self.generator,
None, truncation_value=0)
current_styles.append(s)
update_identity = [True for i in range(len(det))]
current_boxes = np.array(det.boxes)
edits = defaultdict(defaultdict)
cur_face_idx = -1 % len(current_boxes)
img, update_identity = self.anonymize(img, show_boxes, cur_face_idx, current_styles, current_boxes, update_identity, edits, cache_id=cache_id)
return img, current_styles, current_boxes, update_identity, edits, cur_face_idx
def change_face(self, change, cur_face_idx, current_boxes, input_image, show_boxes, current_styles, update_identity, edits):
cur_face_idx = (cur_face_idx+change) % len(current_boxes)
img, update_identity = self.anonymize(input_image, show_boxes, cur_face_idx, current_styles, current_boxes, update_identity, edits)
return img, update_identity, cur_face_idx
def add_style(self, face_idx: int, prompt: str, strength: float, input_image, show_boxes, current_styles, current_boxes, update_identity, edits):
face_idx = face_idx % len(current_boxes)
edits[face_idx][prompt] = strength
img, update_identity = self.anonymize(input_image, show_boxes, face_idx, current_styles, current_boxes, update_identity, edits)
return img, update_identity, edits
def setup_interface(self):
current_styles = gradio.State()
current_boxes = gradio.State(None)
update_identity = gradio.State([])
edits = gradio.State([])
with gradio.Row():
input_image = gradio.Image(
type="pil", label="Upload your image or try the example below!",source="webcam")
output_image = gradio.Image(type="numpy", label="Output")
with gradio.Row():
update_btn = gradio.Button("Update Anonymization").style(full_width=True)
with gradio.Row():
show_boxes = gradio.Checkbox(value=True, label="Show Selected")
cur_face_idx = gradio.Number(value=-1,label="Current", interactive=False)
previous = gradio.Button("Previous Person")
next_ = gradio.Button("Next Person")
with gradio.Row():
text_prompt = gradio.Textbox(
placeholder=" | ".join(list(self.precomputed_edits)),
label="Text Prompt for Edit")
edit_strength = gradio.Slider(0, 5, step=.01)
add_btn = gradio.Button("Add Edit")
add_btn.click(self.add_style, inputs=[cur_face_idx, text_prompt, edit_strength, input_image, show_boxes, current_styles, current_boxes, update_identity, edits], outputs=[output_image, update_identity, edits])
update_btn.click(self.update_image, inputs=[input_image, show_boxes], outputs=[output_image, current_styles, current_boxes, update_identity, edits, cur_face_idx])
input_image.change(self.update_image, inputs=[input_image, show_boxes], outputs=[output_image, current_styles, current_boxes, update_identity, edits, cur_face_idx])
previous.click(self.change_face, inputs=[gradio.State(-1), cur_face_idx, current_boxes, input_image, show_boxes, current_styles, update_identity, edits], outputs=[output_image, update_identity, cur_face_idx])
next_.click(self.change_face, inputs=[gradio.State(1), cur_face_idx, current_boxes, input_image, show_boxes, current_styles, update_identity, edits], outputs=[output_image, update_identity, cur_face_idx])
show_boxes.change(self.anonymize, inputs=[input_image, show_boxes, cur_face_idx, current_styles, current_boxes, update_identity, edits], outputs=[output_image, update_identity])
cfg_body = utils.load_config("configs/anonymizers/FB_cse.py")
anonymizer_body = instantiate(cfg_body.anonymizer, load_cache=False)
anonymizer_body.initialize_tracker(fps=1)
cfg_face = utils.load_config("configs/anonymizers/face.py")
anonymizer_face = instantiate(cfg_face.anonymizer, load_cache=False)
anonymizer_face.initialize_tracker(fps=1)
class WebcamDemo:
def __init__(self, anonymizer) -> None:
self.anonymizer = anonymizer
with gradio.Row():
input_image = gradio.Image(type="pil", source="webcam", streaming=True)
output_image = gradio.Image(type="numpy", label="Output")
visualize_det = gradio.Checkbox(value=False, label="Show Detections")
input_image.stream(self.anonymize, [input_image, visualize_det], [output_image])
self.track = True
def anonymize(self, img: Image, visualize_detection: bool):
img, cache_id = pil2torch(img)
img = tops.to_cuda(img)
if visualize_detection:
img = self.anonymizer.visualize_detection(img, cache_id=cache_id)
else:
img = self.anonymizer(
img, truncation_value=0, multi_modal_truncation=True, amp=True,
cache_id=cache_id, track=self.track)
img = utils.im2numpy(img)
return img
class ExampleDemo(WebcamDemo):
def __init__(self, anonymizer) -> None:
self.anonymizer = anonymizer
with gradio.Row():
input_image = gradio.Image(type="pil", source="webcam")
output_image = gradio.Image(type="numpy", label="Output")
with gradio.Row():
update_btn = gradio.Button("Update Anonymization").style(full_width=True)
visualize_det = gradio.Checkbox(value=False, label="Show Detections")
visualize_det.change(self.anonymize, inputs=[input_image, visualize_det], outputs=[output_image])
gradio.Examples(
["media2/erling.jpg", "media2/regjeringen.jpg"], inputs=[input_image]
)
update_btn.click(self.anonymize, inputs=[input_image, visualize_det], outputs=[output_image])
input_image.change(self.anonymize, inputs=[input_image, visualize_det], outputs=[output_image])
self.track = False
class Information:
def __init__(self) -> None:
gradio.Markdown("## <center> Face Anonymization Architecture </center>")
gradio.Markdown("---")
gradio.Image(value="media2/overall_architecture.png")
gradio.Markdown("## <center> Full-Body Anonymization Architecture </center>")
gradio.Markdown("---")
gradio.Image(value="media2/full_body.png")
gradio.Markdown("### <center> Generative Adversarial Networks </center>")
gradio.Markdown("---")
gradio.Image(value="media2/gan_architecture.png")
def pil2torch(img: Image.Image):
img = img.convert("RGB")
img = np.array(img)
img = np.rollaxis(img, 2)
return torch.from_numpy(img), None
with gradio.Blocks() as demo:
gradio.Markdown("# <center> DeepPrivacy2 - Realistic Image Anonymization </center>")
gradio.Markdown("### <center> Håkon Hukkelås, Rudolf Mester, Frank Lindseth </center>")
with gradio.Tab("Text-Guided Anonymization"):
GuidedDemo(anonymizer_face, cfg_face).setup_interface()
with gradio.Tab("Live Full-Body"):
WebcamDemo(anonymizer_body)
with gradio.Tab("Live Face"):
WebcamDemo(anonymizer_face)
demo.launch() |