Spaces:
Runtime error
Runtime error
File size: 52,071 Bytes
548d634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 |
# What is missing from this implementation
# 1. Global context in res block
# 2. Cross attention of conditional information in resnet block
#
from functools import partial
import tops
from tops.config import instantiate
import warnings
from typing import Iterable, List, Tuple
import numpy as np
import torch
import torch.nn as nn
from torch import einsum
from einops import rearrange
from dp2 import infer, utils
from .base import BaseGenerator
from sg3_torch_utils.ops import bias_act
from dp2.layers import Sequential
import torch.nn.functional as F
from torchvision.transforms.functional import resize, InterpolationMode
from sg3_torch_utils.ops import conv2d_resample, fma, upfirdn2d
class Upfirdn2d(torch.nn.Module):
def __init__(self, down=1, up=1, fix_gain=True):
super().__init__()
self.register_buffer("resample_filter", upfirdn2d.setup_filter([1, 3, 3, 1]))
fw, fh = upfirdn2d._get_filter_size(self.resample_filter)
px0, px1, py0, py1 = upfirdn2d._parse_padding(0)
self.down = down
self.up = up
if up > 1:
px0 += (fw + up - 1) // 2
px1 += (fw - up) // 2
py0 += (fh + up - 1) // 2
py1 += (fh - up) // 2
if down > 1:
px0 += (fw - down + 1) // 2
px1 += (fw - down) // 2
py0 += (fh - down + 1) // 2
py1 += (fh - down) // 2
self.padding = [px0,px1,py0,py1]
self.gain = up**2 if fix_gain else 1
def forward(self, x, *args):
if isinstance(x, dict):
x = {k: v for k, v in x.items()}
x["x"] = upfirdn2d.upfirdn2d(x["x"], self.resample_filter, down=self.down, padding=self.padding, up=self.up, gain=self.gain)
return x
x = upfirdn2d.upfirdn2d(x, self.resample_filter, down=self.down, padding=self.padding, up=self.up, gain=self.gain)
if len(args) == 0:
return x
return (x, *args)
@torch.no_grad()
def spatial_embed_keypoints(keypoints: torch.Tensor, x):
tops.assert_shape(keypoints, (None, None, 3))
B, N_K, _ = keypoints.shape
H, W = x.shape[-2:]
keypoint_spatial = torch.zeros(keypoints.shape[0], N_K, H, W, device=keypoints.device, dtype=torch.float32)
x, y, visible = keypoints.chunk(3, dim=2)
x = (x * W).round().long().clamp(0, W-1)
y = (y * H).round().long().clamp(0, H-1)
kp_idx = torch.arange(0, N_K, 1, device=keypoints.device, dtype=torch.long).view(1, -1, 1).repeat(B, 1, 1)
pos = (kp_idx*(H*W) + y*W + x + 1)
# Offset all by 1 to index invisible keypoints as 0
pos = (pos * visible.round().long()).squeeze(dim=-1)
keypoint_spatial = torch.zeros(keypoints.shape[0], N_K*H*W+1, device=keypoints.device, dtype=torch.float32)
keypoint_spatial.scatter_(1, pos, 1)
keypoint_spatial = keypoint_spatial[:, 1:].view(-1, N_K, H, W)
return keypoint_spatial
def modulated_conv2d(
x, # Input tensor of shape [batch_size, in_channels, in_height, in_width].
weight, # Weight tensor of shape [out_channels, in_channels, kernel_height, kernel_width].
styles, # Modulation coefficients of shape [batch_size, in_channels].
noise = None, # Optional noise tensor to add to the output activations.
up = 1, # Integer upsampling factor.
down = 1, # Integer downsampling factor.
padding = 0, # Padding with respect to the upsampled image.
resample_filter = None, # Low-pass filter to apply when resampling activations. Must be prepared beforehand by calling upfirdn2d.setup_filter().
demodulate = True, # Apply weight demodulation?
flip_weight = True, # False = convolution, True = correlation (matches torch.nn.functional.conv2d).
fused_modconv = True, # Perform modulation, convolution, and demodulation as a single fused operation?
):
batch_size = x.shape[0]
out_channels, in_channels, kh, kw = weight.shape
tops.assert_shape(weight, [out_channels, in_channels, kh, kw]) # [OIkk]
tops.assert_shape(x, [batch_size, in_channels, None, None]) # [NIHW]
tops.assert_shape(styles, [batch_size, in_channels]) # [NI]
# Pre-normalize inputs to avoid FP16 overflow.
if x.dtype == torch.float16 and demodulate:
weight = weight * (1 / np.sqrt(in_channels * kh * kw) / weight.norm(float('inf'), dim=[1,2,3], keepdim=True)) # max_Ikk
styles = styles / styles.norm(float('inf'), dim=1, keepdim=True) # max_I
# Calculate per-sample weights and demodulation coefficients.
w = None
dcoefs = None
if demodulate or fused_modconv:
w = weight.unsqueeze(0) # [NOIkk]
w = w * styles.reshape(batch_size, 1, -1, 1, 1) # [NOIkk]
if demodulate:
dcoefs = (w.square().sum(dim=[2,3,4]) + 1e-8).rsqrt() # [NO]
if demodulate and fused_modconv:
w = w * dcoefs.reshape(batch_size, -1, 1, 1, 1) # [NOIkk]
# Execute by scaling the activations before and after the convolution.
if not fused_modconv:
x = x * styles.reshape(batch_size, -1, 1, 1)
x = conv2d_resample.conv2d_resample(x=x, w=weight, f=resample_filter, up=up, down=down, padding=padding, flip_weight=flip_weight)
if demodulate and noise is not None:
x = fma.fma(x, dcoefs.reshape(batch_size, -1, 1, 1), noise.to(x.dtype))
elif demodulate:
x = x * dcoefs.reshape(batch_size, -1, 1, 1)
elif noise is not None:
x = x.add_(noise.to(x.dtype))
return x
with tops.suppress_tracer_warnings(): # this value will be treated as a constant
batch_size = int(batch_size)
# Execute as one fused op using grouped convolution.
tops.assert_shape(x, [batch_size, in_channels, None, None])
x = x.reshape(1, -1, *x.shape[2:])
w = w.reshape(-1, in_channels, kh, kw)
x = conv2d_resample.conv2d_resample(x=x, w=w, f=resample_filter, up=up, down=down, padding=padding, groups=batch_size, flip_weight=flip_weight)
x = x.reshape(batch_size, -1, *x.shape[2:])
if noise is not None:
x = x.add_(noise)
return x
class Identity(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x, *args, **kwargs):
return x
class LayerNorm(nn.Module):
def __init__(self, dim, stable=False):
super().__init__()
self.stable = stable
self.g = nn.Parameter(torch.ones(dim))
def forward(self, x):
if self.stable:
x = x / x.amax(dim=-1, keepdim=True).detach()
eps = 1e-5 if x.dtype == torch.float32 else 1e-3
var = torch.var(x, dim=-1, unbiased=False, keepdim=True)
mean = torch.mean(x, dim=-1, keepdim=True)
return (x - mean) * (var + eps).rsqrt() * self.g
class FullyConnectedLayer(torch.nn.Module):
def __init__(self,
in_features, # Number of input features.
out_features, # Number of output features.
bias = True, # Apply additive bias before the activation function?
activation = 'linear', # Activation function: 'relu', 'lrelu', etc.
lr_multiplier = 1, # Learning rate multiplier.
bias_init = 0, # Initial value for the additive bias.
):
super().__init__()
self.repr = dict(
in_features=in_features, out_features=out_features, bias=bias,
activation=activation, lr_multiplier=lr_multiplier, bias_init=bias_init)
self.activation = activation
self.weight = torch.nn.Parameter(torch.randn([out_features, in_features]) / lr_multiplier)
self.bias = torch.nn.Parameter(torch.full([out_features], np.float32(bias_init))) if bias else None
self.weight_gain = lr_multiplier / np.sqrt(in_features)
self.bias_gain = lr_multiplier
self.in_features = in_features
self.out_features = out_features
def forward(self, x):
w = self.weight * self.weight_gain
b = self.bias
if b is not None:
if self.bias_gain != 1:
b = b * self.bias_gain
x = F.linear(x, w)
x = bias_act.bias_act(x, b, act=self.activation)
return x
def extra_repr(self) -> str:
return ", ".join([f"{key}={item}" for key, item in self.repr.items()])
def checkpoint_fn(fn, *args, **kwargs):
warnings.simplefilter("ignore")
return torch.utils.checkpoint.checkpoint(fn, *args, **kwargs)
class Conv2d(torch.nn.Module):
def __init__(
self,
in_channels,
out_channels,
kernel_size=3,
activation='lrelu',
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
bias=True,
norm=None,
lr_multiplier=1,
bias_init=0,
w_dim=None,
gradient_checkpoint_norm=False,
gain=1,
):
super().__init__()
self.fused_modconv = False
if norm == torch.nn.InstanceNorm2d:
self.norm = torch.nn.InstanceNorm2d(None)
elif isinstance(norm, torch.nn.Module):
self.norm = norm
elif norm == "fused_modconv":
self.fused_modconv = True
elif norm:
self.norm = torch.nn.InstanceNorm2d(None)
elif norm is not None:
raise ValueError(f"norm not supported: {norm}")
self.activation = activation
self.conv_clamp = conv_clamp
self.out_channels = out_channels
self.in_channels = in_channels
self.padding = kernel_size // 2
self.repr = dict(
in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size,
activation=activation, conv_clamp=conv_clamp, bias=bias,
fused_modconv=self.fused_modconv
)
self.act_gain = bias_act.activation_funcs[activation].def_gain * gain
self.weight_gain = lr_multiplier / np.sqrt(in_channels * (kernel_size ** 2))
self.weight = torch.nn.Parameter(torch.randn([out_channels, in_channels, kernel_size, kernel_size]))
self.bias = torch.nn.Parameter(torch.zeros([out_channels])+bias_init) if bias else None
self.bias_gain = lr_multiplier
if w_dim is not None:
if self.fused_modconv:
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
else:
self.affine = FullyConnectedLayer(w_dim, in_channels, bias_init=1)
self.affine_beta = FullyConnectedLayer(w_dim, in_channels, bias_init=0)
self.gradient_checkpoint_norm = gradient_checkpoint_norm
def forward(self, x, w=None, gain=1, **kwargs):
if self.fused_modconv:
styles = self.affine(w)
with torch.cuda.amp.autocast(enabled=False):
x = modulated_conv2d(x=x.half(), weight=self.weight.half(), styles=styles.half(), noise=None,
padding=self.padding, flip_weight=True, fused_modconv=False).to(x.dtype)
else:
if hasattr(self, "affine"):
gamma = self.affine(w).view(-1, self.in_channels, 1, 1)
beta = self.affine_beta(w).view(-1, self.in_channels, 1, 1)
x = fma.fma(x, gamma ,beta)
w = self.weight * self.weight_gain
x = F.conv2d(input=x, weight=w, padding=self.padding,)
if hasattr(self, "norm"):
if self.gradient_checkpoint_norm:
x = checkpoint_fn(self.norm, x)
else:
x = self.norm(x)
act_gain = self.act_gain * gain
act_clamp = self.conv_clamp * gain if self.conv_clamp is not None else None
b = self.bias * self.bias_gain if self.bias is not None else None
x = bias_act.bias_act(x, b, act=self.activation, gain=act_gain, clamp=act_clamp)
return x
def extra_repr(self) -> str:
return ", ".join([f"{key}={item}" for key, item in self.repr.items()])
class CrossAttention(nn.Module):
def __init__(
self,
dim,
context_dim,
dim_head=64,
heads=8,
norm_context=False,
):
super().__init__()
self.scale = dim_head ** -0.5
self.heads = heads
inner_dim = dim_head * heads
self.norm = nn.InstanceNorm1d(dim)
self.norm_context = nn.InstanceNorm1d(None) if norm_context else Identity()
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim, bias=False),
nn.InstanceNorm1d(None)
)
def forward(self, x, w):
x = self.norm(x)
w = self.norm_context(w)
q, k, v = (self.to_q(x), *self.to_kv(w).chunk(2, dim = -1))
q = rearrange(q, "b n (h d) -> b h n d", h = self.heads)
k = rearrange(k, "b n (h d) -> b h n d", h = self.heads)
v = rearrange(v, "b n (h d) -> b h n d", h = self.heads)
q = q * self.scale
# similarities
sim = einsum('b h i d, b h j d -> b h i j', q, k)
attn = sim.softmax(dim = -1, dtype = torch.float32)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class SG2ResidualBlock(torch.nn.Module):
def __init__(
self,
in_channels, # Number of input channels, 0 = first block.
out_channels, # Number of output channels.
conv_clamp=None, # Clamp the output of convolution layers to +-X, None = disable clamping.
skip_gain=np.sqrt(.5),
cross_attention: bool = False,
cross_attention_len: int = None,
use_adain: bool = True,
**layer_kwargs, # Arguments for conv layer.
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
w_dim = layer_kwargs.pop("w_dim") if "w_dim" in layer_kwargs else None
if use_adain:
layer_kwargs["w_dim"] = w_dim
self.conv0 = Conv2d(in_channels, out_channels, conv_clamp=conv_clamp, **layer_kwargs)
self.conv1 = Conv2d(out_channels, out_channels, conv_clamp=conv_clamp, **layer_kwargs, gain=skip_gain)
self.skip = Conv2d(in_channels, out_channels, kernel_size=1, bias=False, gain=skip_gain)
if cross_attention and w_dim is not None:
self.cross_attention_len = cross_attention_len
self.cross_attn = CrossAttention(
dim=out_channels, context_dim=w_dim//self.cross_attention_len,
gain=skip_gain)
def forward(self, x, w=None, **layer_kwargs):
y = self.skip(x)
x = self.conv0(x, w, **layer_kwargs)
x = self.conv1(x, w, **layer_kwargs)
if hasattr(self, "cross_attn"):
h = x.shape[-2]
x = rearrange(x, "b c h w -> b (h w) c")
w = rearrange(w, "b (n c) -> b n c", n=self.cross_attention_len)
x = self.cross_attn(x, w=w) + x
x = rearrange(x, "b (h w) c -> b c h w", h=h)
return y + x
def default(val, d):
if val is not None:
return val
return d() if callable(d) else d
def cast_tuple(val, length=None):
if isinstance(val, Iterable) and not isinstance(val, str):
val = tuple(val)
output = val if isinstance(val, tuple) else ((val,) * default(length, 1))
if length is not None:
assert len(output) == length, (output, length)
return output
class Attention(nn.Module):
# This is a version of Multi-Query Attention ()
# Fast Transformer Decoding: One Write-Head is All You Need
# Ablated in: https://arxiv.org/pdf/2203.07814.pdf
# and https://arxiv.org/pdf/2204.02311.pdf
def __init__(self, dim, norm, attn_fix_gain, gradient_checkpoint, dim_head=64, heads=8, cosine_sim_attn=False, fix_attention_again=False, gain=None):
super().__init__()
self.scale = dim_head**-0.5 if not cosine_sim_attn else 1.0
self.cosine_sim_attn = cosine_sim_attn
self.cosine_sim_scale = 16 if cosine_sim_attn else 1
self.gradient_checkpoint = gradient_checkpoint
self.heads = heads
self.dim = dim
self.fix_attention_again = fix_attention_again
inner_dim = dim_head * heads
if norm == "LN":
self.norm = LayerNorm(dim)
elif norm == "IN":
self.norm = nn.InstanceNorm1d(dim)
elif norm is None:
self.norm = nn.Identity()
else:
raise ValueError(f"Norm not supported: {norm}")
self.to_q = FullyConnectedLayer(dim, inner_dim, bias=False)
self.to_kv = FullyConnectedLayer(dim, dim_head*2, bias=False)
self.to_out = nn.Sequential(
FullyConnectedLayer(inner_dim, dim, bias=False),
LayerNorm(dim) if norm == "LN" else nn.InstanceNorm1d(dim)
)
if fix_attention_again:
assert gain is not None
self.gain = gain
else:
self.gain = np.sqrt(.5) if attn_fix_gain else 1
def run_function(self, x, attn_bias):
b, c, h, w = x.shape
x = rearrange(x, "b c h w -> b (h w) c")
in_ = x
b, n, device = *x.shape[:2], x.device
x = self.norm(x)
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
q = rearrange(q, "b n (h d) -> b h n d", h=self.heads)
q = q * self.scale
# calculate query / key similarities
sim = einsum("b h i d, b j d -> b h i j", q, k) * self.cosine_sim_scale
if attn_bias is not None:
attn_bias = attn_bias
attn_bias = rearrange(attn_bias, "n c h w -> n c 1 (h w)")
sim = sim + attn_bias
attn = sim.softmax(dim=-1)
out = einsum("b h i j, b j d -> b h i d", attn, v)
out = rearrange(out, "b h n d -> b n (h d)")
if self.fix_attention_again:
out = self.to_out(out)*self.gain + in_
else:
out = (self.to_out(out) + in_) * self.gain
out = rearrange(out, "b (h w) c -> b c h w", h=h)
return out
def forward(self, x, *args, attn_bias=None, **kwargs):
if self.gradient_checkpoint:
return checkpoint_fn(self.run_function, x, attn_bias)
return self.run_function(x, attn_bias)
def get_attention(self, x, attn_bias=None):
b, c, h, w = x.shape
x = rearrange(x, "b c h w -> b (h w) c")
in_ = x
b, n, device = *x.shape[:2], x.device
x = self.norm(x)
q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
q = rearrange(q, "b n (h d) -> b h n d", h=self.heads)
q = q * self.scale
# calculate query / key similarities
sim = einsum("b h i d, b j d -> b h i j", q, k) * self.cosine_sim_scale
if attn_bias is not None:
attn_bias = attn_bias
attn_bias = rearrange(attn_bias, "n c h w -> n c 1 (h w)")
sim = sim + attn_bias
attn = sim.softmax(dim=-1)
return attn, None
class BiasedAttention(Attention):
def __init__(self, *args, head_wise: bool=True, **kwargs):
super().__init__(*args, **kwargs)
out_ch = self.heads if head_wise else 1
self.conv = Conv2d(self.dim+2, out_ch, activation="linear", kernel_size=3, bias_init=0)
nn.init.zeros_(self.conv.weight.data)
def forward(self, x, mask):
mask = resize(mask, size=x.shape[-2:])
bias = self.conv(torch.cat((x, mask, 1-mask), dim=1))
return super().forward(x=x, attn_bias=bias)
def get_attention(self, x, mask):
mask = resize(mask, size=x.shape[-2:])
bias = self.conv(torch.cat((x, mask, 1-mask), dim=1))
return super().get_attention(x, bias)[0], bias
class UNet(BaseGenerator):
def __init__(
self,
im_channels: int,
dim: int,
dim_mults: tuple,
num_resnet_blocks, # Number of resnet blocks per resolution
n_middle_blocks: int,
z_channels: int,
conv_clamp: int,
layer_attn,
w_dim: int,
norm_enc: bool,
norm_dec: str,
stylenet: nn.Module,
enc_style: bool, # Toggle style injection in encoder
use_maskrcnn_mask: bool,
skip_all_unets: bool,
fix_resize:bool,
comodulate: bool,
comod_net: nn.Module,
lr_comod: float,
dec_style: bool,
input_keypoints: bool,
n_keypoints: int,
input_keypoint_indices: Tuple[int],
use_adain: bool,
cross_attention: bool,
cross_attention_len: int,
gradient_checkpoint_norm: bool,
attn_cls: partial,
mask_out_train: bool,
fix_gain_again: bool,
) -> None:
super().__init__(z_channels)
self.enc_style = enc_style
self.n_keypoints = n_keypoints
self.input_keypoint_indices = list(input_keypoint_indices)
self.input_keypoints = input_keypoints
self.mask_out_train = mask_out_train
n_layers = len(dim_mults)
self.n_layers = n_layers
layer_attn = cast_tuple(layer_attn, n_layers)
num_resnet_blocks = cast_tuple(num_resnet_blocks, n_layers)
self._cnum = dim
self._image_channels = im_channels
self._z_channels = z_channels
encoder_layers = []
condition_ch = im_channels
self.from_rgb = Conv2d(
condition_ch + 2 + 2*int(use_maskrcnn_mask) + self.input_keypoints*len(input_keypoint_indices)
, dim, 7)
self.use_maskrcnn_mask = use_maskrcnn_mask
self.skip_all_unets = skip_all_unets
dims = [dim*m for m in dim_mults]
enc_blk = partial(
SG2ResidualBlock, conv_clamp=conv_clamp, norm=norm_enc,
use_adain=use_adain and self.enc_style,
w_dim=w_dim,
cross_attention=cross_attention,
cross_attention_len=cross_attention_len,
gradient_checkpoint_norm=gradient_checkpoint_norm
)
dec_blk = partial(
SG2ResidualBlock, conv_clamp=conv_clamp, norm=norm_dec,
use_adain=use_adain and dec_style,
w_dim=w_dim,
cross_attention=cross_attention,
cross_attention_len=cross_attention_len,
gradient_checkpoint_norm=gradient_checkpoint_norm
)
# Currently up/down sampling is done by bilinear upsampling.
# This can be simplified by replacing it with a strided upsampling layer...
self.encoder_attns = nn.ModuleList()
for lidx in range(n_layers):
gain = np.sqrt(1/3) if layer_attn[lidx] and fix_gain_again else np.sqrt(.5)
dim_in = dims[lidx]
dim_out = dims[min(lidx+1, n_layers-1)]
res_blocks = nn.ModuleList()
for i in range(num_resnet_blocks[lidx]):
is_last = num_resnet_blocks[lidx] - 1 == i
cur_dim = dim_out if is_last else dim_in
block = enc_blk(dim_in, cur_dim, skip_gain=gain)
res_blocks.append(block)
if layer_attn[lidx]:
self.encoder_attns.append(attn_cls(dim=dim_out, fix_attention_again=fix_gain_again, gain=gain))
else:
self.encoder_attns.append(Identity())
encoder_layers.append(res_blocks)
self.encoder = torch.nn.ModuleList(encoder_layers)
# initialize decoder
decoder_layers = []
self.unet_layers = torch.nn.ModuleList()
self.decoder_attns = torch.nn.ModuleList()
for lidx in range(n_layers):
dim_in = dims[min(-lidx, -1)]
dim_out = dims[-1-lidx]
res_blocks = nn.ModuleList()
unet_skips = nn.ModuleList()
for i in range(num_resnet_blocks[-lidx-1]):
is_first = i == 0
has_unet = is_first or skip_all_unets
is_last = i == num_resnet_blocks[-lidx-1] - 1
cur_dim = dim_in if is_first else dim_out
if has_unet and is_last and layer_attn[-lidx-1] and fix_gain_again: # x + residual + unet + layer attn
gain = np.sqrt(1/4)
elif has_unet: # x + residual + unet
gain = np.sqrt(1/3)
elif layer_attn[-lidx-1] and fix_gain_again: # x + residual + attention
gain = np.sqrt(1/3)
else: # x + residual
gain = np.sqrt(1/2) # Only residual block
block = dec_blk(cur_dim, dim_out, skip_gain=gain)
res_blocks.append(block)
if has_unet:
unet_block = Conv2d(
cur_dim, cur_dim, kernel_size=1, conv_clamp=conv_clamp,
norm=nn.InstanceNorm2d(None),
gradient_checkpoint_norm=gradient_checkpoint_norm,
gain=gain)
unet_skips.append(unet_block)
else:
unet_skips.append(torch.nn.Identity())
if layer_attn[-lidx-1]:
self.decoder_attns.append(attn_cls(dim=dim_out, fix_attention_again=fix_gain_again, gain=gain))
else:
self.decoder_attns.append(Identity())
decoder_layers.append(res_blocks)
self.unet_layers.append(unet_skips)
middle_blocks = []
for i in range(n_middle_blocks):
block = dec_blk(dims[-1], dims[-1])
middle_blocks.append(block)
if n_middle_blocks != 0:
self.middle_blocks = Sequential(*middle_blocks)
self.decoder = torch.nn.ModuleList(decoder_layers)
self.to_rgb = Conv2d(dim, im_channels, 1, activation="linear", conv_clamp=conv_clamp)
self.stylenet = stylenet
self.downsample = Upfirdn2d(down=2, fix_gain=fix_resize)
self.upsample = Upfirdn2d(up=2, fix_gain=fix_resize)
self.comodulate = comodulate
if comodulate:
assert not self.enc_style
self.to_y = nn.Sequential(
Conv2d(dims[-1], dims[-1], lr_multiplier=lr_comod, gradient_checkpoint_norm=gradient_checkpoint_norm),
nn.AdaptiveAvgPool2d(1),
nn.Flatten(),
FullyConnectedLayer(dims[-1], 512, activation="lrelu", lr_multiplier=lr_comod)
)
self.comod_net = comod_net
def forward(self, condition, mask, maskrcnn_mask=None, z=None, w=None, update_emas=False, keypoints=None, return_decoder_features=False, **kwargs):
if z is None:
z = self.get_z(condition)
if w is None:
w = self.stylenet(z, update_emas=update_emas)
if self.use_maskrcnn_mask:
x = torch.cat((condition, mask, 1-mask, maskrcnn_mask, 1-maskrcnn_mask), dim=1)
else:
x = torch.cat((condition, mask, 1-mask), dim=1)
if self.input_keypoints:
keypoints = keypoints[:, self.input_keypoint_indices]
one_hot_pose = spatial_embed_keypoints(keypoints, x)
x = torch.cat((x, one_hot_pose), dim=1)
x = self.from_rgb(x)
x, unet_features = self.forward_enc(x, mask, w)
x, decoder_features = self.forward_dec(x, mask, w, unet_features)
x = self.to_rgb(x)
unmasked = x
if self.mask_out_train:
x = mask * condition + (1-mask) * x
out = dict(img=x, unmasked=unmasked)
if return_decoder_features:
out["decoder_features"] = decoder_features
return out
def forward_enc(self, x, mask, w):
unet_features = []
for i, res_blocks in enumerate(self.encoder):
is_last = i == len(self.encoder) - 1
for block in res_blocks:
x = block(x, w=w)
unet_features.append(x)
x = self.encoder_attns[i](x, mask=mask)
if not is_last:
x = self.downsample(x)
if self.comodulate:
y = self.to_y(x)
y = torch.cat((w, y), dim=-1)
w = self.comod_net(y)
return x, unet_features
def forward_dec(self, x, mask, w, unet_features):
if hasattr(self, "middle_blocks"):
x = self.middle_blocks(x, w=w)
features = []
unet_features = iter(reversed(unet_features))
for i, (unet_skip, res_blocks) in enumerate(zip(self.unet_layers, self.decoder)):
is_last = i == len(self.decoder) - 1
for skip, block in zip(unet_skip, res_blocks):
skip_x = next(unet_features)
if not isinstance(skip, torch.nn.Identity):
skip_x = skip(skip_x)
x = x + skip_x
x = block(x, w=w)
x = self.decoder_attns[i](x, mask=mask)
features.append(x)
if not is_last:
x = self.upsample(x)
return x, features
def get_w(self, z, update_emas):
return self.stylenet(z, update_emas=update_emas)
@torch.no_grad()
def sample(self, truncation_value, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
w = self.stylenet.w_avg.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
def update_w(self, *args, **kwargs):
self.style_net.update_w(*args, **kwargs)
@property
def style_net(self):
return self.stylenet
@torch.no_grad()
def multi_modal_truncate(self, truncation_value, w_indices=None, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
if w_indices is None:
w_indices = np.random.randint(0, len(self.style_net.w_centers), size=(len(w)))
w_centers = self.style_net.w_centers[w_indices].to(w.device)
w = w_centers.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
def get_stem_unet_kwargs(cfg):
if "stem_cfg" in cfg.generator: # If the stem has another stem, recursively apply get_stem_unet_kwargs
return get_stem_unet_kwargs(cfg.generator.stem_cfg)
return dict(cfg.generator)
class GrowingUnet(BaseGenerator):
def __init__(
self,
coarse_stem_cfg: str, # This can be a coarse generator or None
sr_cfg: str, # Can be a previous progressive u-net, Unet or None
residual: bool,
new_dataset: bool, # The "new dataset" creates condition first -> resizes
**unet_kwargs):
kwargs = dict()
if coarse_stem_cfg is not None:
coarse_stem_cfg = utils.load_config(coarse_stem_cfg)
kwargs = get_stem_unet_kwargs(coarse_stem_cfg)
if sr_cfg is not None:
sr_cfg = utils.load_config(sr_cfg)
sr_stem_unet_kwargs = get_stem_unet_kwargs(sr_cfg)
kwargs.update(sr_stem_unet_kwargs)
kwargs.update(unet_kwargs)
kwargs["stylenet"] = None
kwargs.pop("_target_")
if "sr_cfg" in kwargs: # Unet kwargs are inherited, do not pass this to the new u-net
del kwargs["sr_cfg"]
if "coarse_stem_cfg" in kwargs:
del kwargs["coarse_stem_cfg"]
super().__init__(z_channels=kwargs["z_channels"])
if coarse_stem_cfg is not None:
z_channels = coarse_stem_cfg.generator.z_channels
super().__init__(z_channels)
self.coarse_stem = infer.build_trained_generator(coarse_stem_cfg, map_location="cpu").eval()
self.coarse_stem.imsize = tuple(coarse_stem_cfg.data.imsize)
utils.set_requires_grad(self.coarse_stem, False)
else:
assert not residual
if sr_cfg is not None:
self.sr_stem = infer.build_trained_generator(sr_cfg, map_location="cpu").eval()
del self.sr_stem.from_rgb
del self.sr_stem.to_rgb
if hasattr(self.sr_stem, "coarse_stem"):
del self.sr_stem.coarse_stem
if isinstance(self.sr_stem, UNet):
del self.sr_stem.encoder[0][0] # Delete first residual block
del self.sr_stem.decoder[-1][-1] # Delete last residual block
else:
assert isinstance(self.sr_stem, GrowingUnet)
del self.sr_stem.unet.encoder[0][0] # Delete first residual block
del self.sr_stem.unet.decoder[-1][-1] # Delete last residual block
utils.set_requires_grad(self.sr_stem, False)
args = kwargs.pop("_args_")
if hasattr(self, "sr_stem"): # Growing the SR stem - Add a new layer to match sr
n_layers = len(kwargs["dim_mults"])
dim_mult = sr_stem_unet_kwargs["dim"] / (kwargs["dim"] * max(kwargs["dim_mults"]))
kwargs["dim_mults"] = [*kwargs["dim_mults"], int(dim_mult)]
kwargs["layer_attn"] = [*cast_tuple(kwargs["layer_attn"], n_layers), False]
kwargs["num_resnet_blocks"] = [*cast_tuple(kwargs["num_resnet_blocks"], n_layers), 1]
self.unet = UNet(
*args,
**kwargs
)
self.from_rgb = self.unet.from_rgb
self.to_rgb = self.unet.to_rgb
self.residual = residual
self.new_dataset = new_dataset
if residual:
nn.init.zeros_(self.to_rgb.weight.data)
del self.unet.from_rgb, self.unet.to_rgb
def forward(self, condition, img, mask, maskrcnn_mask=None, z=None, w=None, keypoints=None, **kwargs):
# Downsample for stem
if z is None:
z = self.get_z(img)
if w is None:
w = self.style_net(z)
if hasattr(self, "coarse_stem"):
with torch.no_grad():
if self.new_dataset:
img_stem = utils.denormalize_img(img)*255
condition_stem = img_stem * mask + (1-mask)*127
condition_stem = condition_stem.round()
condition_stem = resize(condition_stem, self.coarse_stem.imsize, antialias=True)
condition_stem = condition_stem / 255 *2 - 1
mask_stem = (torch.nn.functional.adaptive_max_pool2d(1 - mask, output_size=self.coarse_stem.imsize) > 0).logical_not().float()
maskrcnn_stem = (resize(maskrcnn_mask, self.coarse_stem.imsize, interpolation=InterpolationMode.NEAREST) > 0).float()
else:
mask_stem = (resize(mask, self.coarse_stem.imsize, antialias=True) > .99).float()
maskrcnn_stem = (resize(maskrcnn_mask, self.coarse_stem.imsize, antialias=True) > .5).float()
img_stem = utils.denormalize_img(img)*255
img_stem = resize(img_stem, self.coarse_stem.imsize, antialias=True).round()
img_stem = img_stem / 255 * 2 - 1
condition_stem = img_stem * mask_stem
stem_out = self.coarse_stem(
condition=condition_stem, mask=mask_stem,
maskrcnn_mask=maskrcnn_stem, w=w,
keypoints=keypoints)
x_lr = resize(stem_out["img"], condition.shape[-2:], antialias=True)
condition = condition*mask + (1-mask) * x_lr
if self.unet.use_maskrcnn_mask:
x = torch.cat((condition, mask, 1-mask, maskrcnn_mask, 1-maskrcnn_mask), dim=1)
else:
x = torch.cat((condition, mask, 1-mask), dim=1)
if self.unet.input_keypoints:
keypoints = keypoints[:, self.unet.input_keypoint_indices]
one_hot_pose = spatial_embed_keypoints(keypoints, x)
x = torch.cat((x, one_hot_pose), dim=1)
x = self.from_rgb(x)
x, unet_features = self.forward_enc(x, mask, w)
x = self.forward_dec(x, mask, w, unet_features)
if self.residual:
x = self.to_rgb(x) + condition
else:
x = self.to_rgb(x)
return dict(
img=condition * mask + (1-mask) * x,
unmasked=x,
x_lowres=[condition]
)
def forward_enc(self, x, mask, w):
x, unet_features = self.unet.forward_enc(x, mask, w)
if hasattr(self, "sr_stem"):
x, unet_features_stem = self.sr_stem.forward_enc(x, mask, w)
else:
unet_features_stem = None
return x, [unet_features, unet_features_stem]
def forward_dec(self, x, mask, w, unet_features):
unet_features, unet_features_stem = unet_features
if hasattr(self, "sr_stem"):
x = self.sr_stem.forward_dec(x, mask, w, unet_features_stem)
x, unet_features = self.unet.forward_dec(x, mask, w, unet_features)
return x
def get_z(self, *args, **kwargs):
if hasattr(self, "coarse_stem"):
return self.coarse_stem.get_z(*args, **kwargs)
if hasattr(self, "sr_stem"):
return self.sr_stem.get_z(*args, **kwargs)
raise AttributeError()
@property
def style_net(self):
if hasattr(self, "coarse_stem"):
return self.coarse_stem.style_net
if hasattr(self, "sr_stem"):
return self.sr_stem.style_net
raise AttributeError()
def update_w(self, *args, **kwargs):
self.style_net.update_w(*args, **kwargs)
def get_w(self, z, update_emas):
return self.style_net(z, update_emas=update_emas)
@torch.no_grad()
def sample(self, truncation_value, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
w = self.style_net.w_avg.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
@torch.no_grad()
def multi_modal_truncate(self, truncation_value, w_indices=None, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
if w_indices is None:
w_indices = np.random.randint(0, len(self.style_net.w_centers), size=(len(w)))
w_centers = self.style_net.w_centers[w_indices].to(w.device)
w = w_centers.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
class CascadedUnet(BaseGenerator):
def __init__(
self,
coarse_stem_cfg: str, # This can be a coarse generator or None
residual: bool,
new_dataset: bool, # The "new dataset" creates condition first -> resizes
imsize: tuple,
cascade:bool,
**unet_kwargs):
kwargs = dict()
coarse_stem_cfg = utils.load_config(coarse_stem_cfg)
kwargs = get_stem_unet_kwargs(coarse_stem_cfg)
kwargs.update(unet_kwargs)
super().__init__(z_channels=kwargs["z_channels"])
self.input_keypoints = kwargs["input_keypoints"]
self.input_keypoint_indices = kwargs["input_keypoint_indices"]
self.use_maskrcnn_mask = kwargs["use_maskrcnn_mask"]
self.imsize = imsize
self.residual = residual
self.new_dataset = new_dataset
# Setup coarse stem
stem_dims = [m*coarse_stem_cfg.generator.dim for m in coarse_stem_cfg.generator.dim_mults]
self.coarse_stem = infer.build_trained_generator(coarse_stem_cfg, map_location="cpu").eval()
self.coarse_stem.imsize = tuple(coarse_stem_cfg.data.imsize)
utils.set_requires_grad(self.coarse_stem, False)
self.stem_res_to_layer_idx = {
self.coarse_stem.imsize[0] // 2^i: stem_dims[i]
for i in range(len(stem_dims))
}
dim = kwargs["dim"]
dim_mults = kwargs["dim_mults"]
n_layers = len(dim_mults)
dims = [dim*s for s in dim_mults]
layer_attn = cast_tuple(kwargs["layer_attn"], n_layers)
num_resnet_blocks = cast_tuple(kwargs["num_resnet_blocks"], n_layers)
attn_cls = kwargs["attn_cls"]
if not isinstance(attn_cls, partial):
attn_cls = instantiate(attn_cls)
dec_blk = partial(
SG2ResidualBlock, conv_clamp=kwargs["conv_clamp"], norm=kwargs["norm_dec"],
use_adain=kwargs["use_adain"] and kwargs["dec_style"],
w_dim=kwargs["w_dim"],
cross_attention=kwargs["cross_attention"],
cross_attention_len=kwargs["cross_attention_len"],
gradient_checkpoint_norm=kwargs["gradient_checkpoint_norm"]
)
enc_blk = partial(
SG2ResidualBlock, conv_clamp=kwargs["conv_clamp"], norm=kwargs["norm_enc"],
use_adain=kwargs["use_adain"] and kwargs["enc_style"],
w_dim=kwargs["w_dim"],
cross_attention=kwargs["cross_attention"],
cross_attention_len=kwargs["cross_attention_len"],
gradient_checkpoint_norm=kwargs["gradient_checkpoint_norm"]
)
# Currently up/down sampling is done by bilinear upsampling.
# This can be simplified by replacing it with a strided upsampling layer...
self.encoder_attns = nn.ModuleList()
self.encoder_unet_skips = nn.ModuleDict()
self.encoder = nn.ModuleList()
for lidx in range(n_layers):
has_stem_feature = imsize[0]//2^lidx in self.stem_res_to_layer_idx and cascade
next_layer_has_stem_features = lidx+1 < n_layers and imsize[0]//2^(lidx+1) in self.stem_res_to_layer_idx and cascade
dim_in = dims[lidx]
dim_out = dims[min(lidx+1, n_layers-1)]
res_blocks = nn.ModuleList()
if has_stem_feature:
prev_layer_has_attention = lidx != 0 and layer_attn[lidx-1]
stem_lidx = self.stem_res_to_layer_idx[imsize[0]//2^lidx]
self.encoder_unet_skips.add_module(
str(imsize[0]//2^lidx),
Conv2d(
stem_dims[stem_lidx], dim_in, kernel_size=1,
conv_clamp=kwargs["conv_clamp"],
norm=nn.InstanceNorm2d(None),
gradient_checkpoint_norm=kwargs["gradient_checkpoint_norm"],
gain=np.sqrt(1/4) if prev_layer_has_attention else np.sqrt(1/3) # This + previous residual + attention
)
)
for i in range(num_resnet_blocks[lidx]):
is_last = num_resnet_blocks[lidx] - 1 == i
cur_dim = dim_out if is_last else dim_in
if not is_last:
gain = np.sqrt(.5)
elif next_layer_has_stem_features and layer_attn[lidx]:
gain = np.sqrt(1/4)
elif layer_attn[lidx] or next_layer_has_stem_features:
gain = np.sqrt(1/3)
else:
gain = np.sqrt(.5)
block = enc_blk(dim_in, cur_dim, skip_gain=gain)
res_blocks.append(block)
if layer_attn[lidx]:
self.encoder_attns.append(attn_cls(dim=dim_out, gain=gain, fix_attention_again=True))
else:
self.encoder_attns.append(Identity())
self.encoder.append(res_blocks)
# initialize decoder
self.decoder = torch.nn.ModuleList()
self.unet_layers = torch.nn.ModuleList()
self.decoder_attns = torch.nn.ModuleList()
for lidx in range(n_layers):
dim_in = dims[min(-lidx, -1)]
dim_out = dims[-1-lidx]
res_blocks = nn.ModuleList()
unet_skips = nn.ModuleList()
for i in range(num_resnet_blocks[-lidx-1]):
is_first = i == 0
has_unet = is_first or kwargs["skip_all_unets"]
is_last = i == num_resnet_blocks[-lidx-1] - 1
cur_dim = dim_in if is_first else dim_out
if has_unet and is_last and layer_attn[-lidx-1]: # x + residual + unet + layer attn
gain = np.sqrt(1/4)
elif has_unet: # x + residual + unet
gain = np.sqrt(1/3)
elif layer_attn[-lidx-1]: # x + residual + attention
gain = np.sqrt(1/3)
else: # x + residual
gain = np.sqrt(1/2) # Only residual block
block = dec_blk(cur_dim, dim_out, skip_gain=gain)
res_blocks.append(block)
if kwargs["skip_all_unets"] or is_first:
unet_block = Conv2d(
cur_dim, cur_dim, kernel_size=1, conv_clamp=kwargs["conv_clamp"],
norm=nn.InstanceNorm2d(None),
gradient_checkpoint_norm=kwargs["gradient_checkpoint_norm"],
gain=gain)
unet_skips.append(unet_block)
else:
unet_skips.append(torch.nn.Identity())
if layer_attn[-lidx-1]:
self.decoder_attns.append(attn_cls(dim=dim_out, fix_attention_again=True, gain=gain))
else:
self.decoder_attns.append(Identity())
self.decoder.append(res_blocks)
self.unet_layers.append(unet_skips)
self.from_rgb = Conv2d(
3 + 2 + 2*int(kwargs["use_maskrcnn_mask"]) + self.input_keypoints*len(kwargs["input_keypoint_indices"])
, dim, 7)
self.to_rgb = Conv2d(dim, 3, 1, activation="linear", conv_clamp=kwargs["conv_clamp"])
self.downsample = Upfirdn2d(down=2, fix_gain=True)
self.upsample = Upfirdn2d(up=2, fix_gain=True)
self.cascade = cascade
if residual:
nn.init.zeros_(self.to_rgb.weight.data)
def forward(self, condition, img, mask, maskrcnn_mask=None, z=None, w=None, keypoints=None, return_decoder_features=False, **kwargs):
# Downsample for stem
if z is None:
z = self.get_z(img)
with torch.no_grad(): # Forward pass stem
if w is None:
w = self.style_net(z)
img_stem = utils.denormalize_img(img)*255
condition_stem = img_stem * mask + (1-mask)*127
condition_stem = condition_stem.round()
condition_stem = resize(condition_stem, self.coarse_stem.imsize, antialias=True)
condition_stem = condition_stem / 255 *2 - 1
mask_stem = (torch.nn.functional.adaptive_max_pool2d(1 - mask, output_size=self.coarse_stem.imsize) > 0).logical_not().float()
maskrcnn_stem = (resize(maskrcnn_mask, self.coarse_stem.imsize, interpolation=InterpolationMode.NEAREST) > 0).float()
stem_out = self.coarse_stem(
condition=condition_stem, mask=mask_stem,
maskrcnn_mask=maskrcnn_stem, w=w,
keypoints=keypoints,
return_decoder_features=True)
stem_features = stem_out["decoder_features"]
x_lr = resize(stem_out["img"], condition.shape[-2:], antialias=True)
condition = condition*mask + (1-mask) * x_lr
if self.use_maskrcnn_mask:
x = torch.cat((condition, mask, 1-mask, maskrcnn_mask, 1-maskrcnn_mask), dim=1)
else:
x = torch.cat((condition, mask, 1-mask), dim=1)
if self.input_keypoints:
keypoints = keypoints[:, self.input_keypoint_indices]
one_hot_pose = spatial_embed_keypoints(keypoints, x)
x = torch.cat((x, one_hot_pose), dim=1)
x = self.from_rgb(x)
x, unet_features = self.forward_enc(x, mask, w, stem_features)
x, decoder_features = self.forward_dec(x, mask, w, unet_features)
if self.residual:
x = self.to_rgb(x) + condition
else:
x = self.to_rgb(x)
out= dict(
img=condition * mask + (1-mask) * x, # TODO: Probably do not want masked here... or ??
unmasked=x,
x_lowres=[condition]
)
if return_decoder_features:
out["decoder_features"] = decoder_features
return out
def forward_enc(self, x, mask, w, stem_features: List[torch.Tensor]):
unet_features = []
stem_features.reverse()
for i, res_blocks in enumerate(self.encoder):
is_last = i == len(self.encoder) - 1
res = self.imsize[0]//2^i
if str(res) in self.encoder_unet_skips.keys() and self.cascade:
y = stem_features[self.stem_res_to_layer_idx[res]]
y = self.encoder_unet_skips[i](y)
x = y + x
for block in res_blocks:
x = block(x, w=w)
unet_features.append(x)
x = self.encoder_attns[i](x, mask)
if not is_last:
x = self.downsample(x)
return x, unet_features
def forward_dec(self, x, mask, w, unet_features):
features = []
unet_features = iter(reversed(unet_features))
for i, (unet_skip, res_blocks) in enumerate(zip(self.unet_layers, self.decoder)):
is_last = i == len(self.decoder) - 1
for skip, block in zip(unet_skip, res_blocks):
skip_x = next(unet_features)
if not isinstance(skip, torch.nn.Identity):
skip_x = skip(skip_x)
x = x + skip_x
x = block(x, w=w)
x = self.decoder_attns[i](x, mask)
features.append(x)
if not is_last:
x = self.upsample(x)
return x, features
def get_z(self, *args, **kwargs):
return self.coarse_stem.get_z(*args, **kwargs)
@property
def style_net(self):
return self.coarse_stem.style_net
def update_w(self, *args, **kwargs):
self.style_net.update_w(*args, **kwargs)
def get_w(self, z, update_emas):
return self.style_net(z, update_emas=update_emas)
@torch.no_grad()
def sample(self, truncation_value, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
w = self.style_net.w_avg.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
@torch.no_grad()
def multi_modal_truncate(self, truncation_value, w_indices=None, **kwargs):
if truncation_value is None:
return self.forward(**kwargs)
truncation_value = max(0, truncation_value)
truncation_value = min(truncation_value, 1)
w = self.get_w(self.get_z(kwargs["condition"]), False)
if w_indices is None:
w_indices = np.random.randint(0, len(self.style_net.w_centers), size=(len(w)))
w_centers = self.style_net.w_centers[w_indices].to(w.device)
w = w_centers.to(w.dtype).lerp(w, truncation_value)
return self.forward(**kwargs, w=w)
|