Spaces:
Sleeping
Sleeping
h3110Fr13nd
commited on
Commit
·
d48537f
1
Parent(s):
79340f2
RAG using Chroma Langchain
Browse files
README.md
CHANGED
|
@@ -18,4 +18,8 @@
|
|
| 18 |
HF_PASS=your-password
|
| 19 |
```
|
| 20 |
|
| 21 |
-
Now you can run the chatbot and interact with it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
HF_PASS=your-password
|
| 19 |
```
|
| 20 |
|
| 21 |
+
Now you can run the chatbot and interact with it.
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
https://github.com/langchain-ai/langchain/issues/6628#issuecomment-1935374689
|
main.py
CHANGED
|
@@ -10,39 +10,75 @@ from langchain_core.runnables import RunnablePassthrough
|
|
| 10 |
from langchain_core.documents import Document
|
| 11 |
from langchain_core.prompts import ChatPromptTemplate
|
| 12 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
|
| 13 |
# from langchain_community.chains import
|
| 14 |
from langchain_community.chat_models import ChatOllama
|
| 15 |
from langchain_chroma import Chroma
|
| 16 |
from hugchat import hugchat
|
|
|
|
| 17 |
from hugchat.login import Login
|
| 18 |
import dotenv
|
| 19 |
from utils import HuggingChat
|
| 20 |
-
from
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
dotenv.load_dotenv()
|
| 23 |
|
| 24 |
|
| 25 |
class GradioApp:
|
| 26 |
def __init__(self):
|
|
|
|
|
|
|
| 27 |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32)
|
| 28 |
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
Question: {question}
|
| 38 |
-
Answer:
|
| 39 |
|
| 40 |
-
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") )
|
| 43 |
-
self.chain = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def user(self,user_message, history):
|
|
|
|
| 46 |
return "", history + [[user_message, None]]
|
| 47 |
|
| 48 |
def bot(self,history):
|
|
@@ -53,7 +89,8 @@ class GradioApp:
|
|
| 53 |
history[-1][1] += chunks
|
| 54 |
yield history
|
| 55 |
history[-1][1] = history[-1][1] or ""
|
| 56 |
-
history
|
|
|
|
| 57 |
print(history[-1][1])
|
| 58 |
print(history)
|
| 59 |
return history
|
|
|
|
| 10 |
from langchain_core.documents import Document
|
| 11 |
from langchain_core.prompts import ChatPromptTemplate
|
| 12 |
from langchain_core.output_parsers import StrOutputParser
|
| 13 |
+
|
| 14 |
# from langchain_community.chains import
|
| 15 |
from langchain_community.chat_models import ChatOllama
|
| 16 |
from langchain_chroma import Chroma
|
| 17 |
from hugchat import hugchat
|
| 18 |
+
# from langchain.callbacks import SystemMessage
|
| 19 |
from hugchat.login import Login
|
| 20 |
import dotenv
|
| 21 |
from utils import HuggingChat
|
| 22 |
+
from langchain_core.prompts import PromptTemplate
|
| 23 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 24 |
+
import langchain
|
| 25 |
+
langchain.debug = True
|
| 26 |
|
| 27 |
dotenv.load_dotenv()
|
| 28 |
|
| 29 |
|
| 30 |
class GradioApp:
|
| 31 |
def __init__(self):
|
| 32 |
+
|
| 33 |
+
self.history = []
|
| 34 |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32)
|
| 35 |
|
| 36 |
|
| 37 |
+
# template = """
|
| 38 |
+
# You are a helpful health assistant. These Human will ask you a questions about their pregnancy health.
|
| 39 |
+
# Use following piece of context to answer the question.
|
| 40 |
+
# If you don't know the answer, just say you don't know.
|
| 41 |
+
# Keep the answer within 2 sentences and concise.
|
| 42 |
+
|
| 43 |
+
# Context: {context}
|
| 44 |
+
# Question: {question}
|
| 45 |
+
# Answer: """
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
self.template = """
|
| 49 |
+
You are a helpful AI bot that guides the customer or user through the website content and provides the user with exact details they want.
|
| 50 |
+
You help everyone by answering questions, and improve your answers from previous answers in History.
|
| 51 |
+
Don't try to make up an answer, if you don't know, just say that you don't know.
|
| 52 |
+
Answer in the same language the question was asked.
|
| 53 |
+
Answer in a way that is easy to understand.
|
| 54 |
+
Try to limit the answer to 3-4 sentences.
|
| 55 |
+
Do not say "Based on the information you provided, ..." or "I think the answer is...". Just answer the question directly in detail.
|
| 56 |
|
| 57 |
+
History: {chat_history}
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
Context: {context}
|
| 60 |
|
| 61 |
+
Question: {question}
|
| 62 |
+
Answer:
|
| 63 |
+
"""
|
| 64 |
+
self.prompt = PromptTemplate(
|
| 65 |
+
template=self.template,
|
| 66 |
+
input_variables=["chat_history","context", "question"]
|
| 67 |
+
)
|
| 68 |
+
self.db = Chroma(persist_directory="./pragetx_chroma", embedding_function=HuggingFaceEmbeddings())
|
| 69 |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") )
|
| 70 |
+
self.chain = (
|
| 71 |
+
{"chat_history": self.chat_history, "context": self.db.as_retriever(k=1), "question": RunnablePassthrough()} |
|
| 72 |
+
self.prompt |
|
| 73 |
+
self.llm |
|
| 74 |
+
StrOutputParser())
|
| 75 |
+
def chat_history(self, history):
|
| 76 |
+
print(self.history)
|
| 77 |
+
print("\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history))
|
| 78 |
+
return "\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history)
|
| 79 |
|
| 80 |
def user(self,user_message, history):
|
| 81 |
+
self.history = history + [[user_message, None]]
|
| 82 |
return "", history + [[user_message, None]]
|
| 83 |
|
| 84 |
def bot(self,history):
|
|
|
|
| 89 |
history[-1][1] += chunks
|
| 90 |
yield history
|
| 91 |
history[-1][1] = history[-1][1] or ""
|
| 92 |
+
self.history = history
|
| 93 |
+
# history[-1][1] += self.chain.invoke(prompt)
|
| 94 |
print(history[-1][1])
|
| 95 |
print(history)
|
| 96 |
return history
|
setup.py
CHANGED
|
@@ -6,7 +6,7 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
| 6 |
|
| 7 |
loader = TextLoader('./pragetx.md')
|
| 8 |
documents = loader.load()
|
| 9 |
-
text_splitter = CharacterTextSplitter(chunk_size=
|
| 10 |
docs = text_splitter.split_documents(documents)
|
| 11 |
|
| 12 |
embeddings = HuggingFaceEmbeddings()
|
|
|
|
| 6 |
|
| 7 |
loader = TextLoader('./pragetx.md')
|
| 8 |
documents = loader.load()
|
| 9 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=4)
|
| 10 |
docs = text_splitter.split_documents(documents)
|
| 11 |
|
| 12 |
embeddings = HuggingFaceEmbeddings()
|