Spaces:
Runtime error
Runtime error
Commit
·
09d4719
1
Parent(s):
7246b62
Update with h2oGPT hash 27616ac37a45f19994b9d1893953791e1644b3f1
Browse files- app.py +107 -89
- client_test.py +56 -28
- finetune.py +7 -1
app.py
CHANGED
|
@@ -83,6 +83,10 @@ def main(
|
|
| 83 |
# set to True to load --base_model after client logs in,
|
| 84 |
# to be able to free GPU memory when model is swapped
|
| 85 |
login_mode_if_model0: bool = False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
sanitize_user_prompt: bool = True,
|
| 88 |
sanitize_bot_response: bool = True,
|
|
@@ -116,6 +120,12 @@ def main(
|
|
| 116 |
# must override share if in spaces
|
| 117 |
share = False
|
| 118 |
save_dir = os.getenv('SAVE_DIR', save_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
# get defaults
|
| 121 |
model_lower = base_model.lower()
|
|
@@ -166,7 +176,7 @@ def main(
|
|
| 166 |
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
|
| 167 |
output = data[i]['conversations'][turn_start + 1]['value']
|
| 168 |
examplenew = example1.copy()
|
| 169 |
-
assert not chat, "No gradio must use chat=False, uses nochat
|
| 170 |
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
|
| 171 |
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
|
| 172 |
examplenew[eval_func_param_names.index('context')] = '' # no context
|
|
@@ -528,6 +538,7 @@ def get_score_model(**kwargs):
|
|
| 528 |
|
| 529 |
def go_gradio(**kwargs):
|
| 530 |
# get default model
|
|
|
|
| 531 |
all_kwargs = kwargs.copy()
|
| 532 |
all_kwargs.update(locals())
|
| 533 |
if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
|
|
@@ -726,12 +737,12 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 726 |
placeholder=kwargs['placeholder_input'])
|
| 727 |
submit_nochat = gr.Button("Submit")
|
| 728 |
flag_btn_nochat = gr.Button("Flag")
|
| 729 |
-
if kwargs['
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
|
| 735 |
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
| 736 |
col_chat = gr.Column(visible=kwargs['chat'])
|
| 737 |
with col_chat:
|
|
@@ -751,19 +762,19 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 751 |
with gr.Row():
|
| 752 |
clear = gr.Button("New Conversation")
|
| 753 |
flag_btn = gr.Button("Flag")
|
| 754 |
-
if kwargs['
|
| 755 |
-
|
| 756 |
-
with gr.
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
| 768 |
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
|
| 769 |
retry = gr.Button("Regenerate")
|
|
@@ -942,7 +953,6 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 942 |
fun = partial(evaluate,
|
| 943 |
**kwargs_evaluate)
|
| 944 |
fun2 = partial(evaluate,
|
| 945 |
-
model_state2,
|
| 946 |
**kwargs_evaluate)
|
| 947 |
|
| 948 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
|
@@ -953,7 +963,7 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 953 |
None,
|
| 954 |
None,
|
| 955 |
_js=dark_js,
|
| 956 |
-
api_name="dark",
|
| 957 |
)
|
| 958 |
|
| 959 |
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
|
|
@@ -966,7 +976,7 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 966 |
def context_fun(x):
|
| 967 |
return gr.Textbox.update(visible=not x)
|
| 968 |
|
| 969 |
-
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \
|
| 970 |
.then(col_chat_fun, chat, col_chat) \
|
| 971 |
.then(context_fun, chat, context)
|
| 972 |
|
|
@@ -1042,25 +1052,31 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 1042 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
| 1043 |
return 'Response Score: {:.1%}'.format(score)
|
| 1044 |
|
|
|
|
|
|
|
| 1045 |
if kwargs['score_model']:
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
|
| 1052 |
-
|
| 1053 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1054 |
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
|
| 1060 |
-
|
| 1061 |
-
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
|
| 1065 |
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
|
| 1066 |
"""
|
|
@@ -1208,64 +1224,64 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 1208 |
if kwargs['auto_score']:
|
| 1209 |
# in case 2nd model, consume instruction first, so can clear quickly
|
| 1210 |
# bot doesn't consume instruction itself, just history from user, so why works
|
| 1211 |
-
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
|
| 1212 |
-
.then(**user_args2, queue=stream_output, api_name='instruction2') \
|
| 1213 |
.then(clear_instruct, None, instruction) \
|
| 1214 |
-
.then(**bot_args, api_name='instruction_bot') \
|
| 1215 |
-
.then(**score_args, api_name='instruction_bot_score') \
|
| 1216 |
-
.then(**bot_args2, api_name='instruction_bot2') \
|
| 1217 |
-
.then(**score_args2, api_name='instruction_bot_score2') \
|
| 1218 |
.then(clear_torch_cache)
|
| 1219 |
-
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
|
| 1220 |
-
.then(**user_args2, queue=stream_output, api_name='submit2') \
|
| 1221 |
-
.then(**bot_args, api_name='submit_bot') \
|
| 1222 |
.then(clear_instruct, None, instruction) \
|
| 1223 |
-
.then(**score_args, api_name='submit_bot_score') \
|
| 1224 |
-
.then(**bot_args2, api_name='submit_bot2') \
|
| 1225 |
-
.then(**score_args2, api_name='submit_bot_score2') \
|
| 1226 |
.then(clear_torch_cache)
|
| 1227 |
-
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
|
| 1228 |
-
.then(**user_args2, queue=stream_output, api_name='retry2') \
|
| 1229 |
.then(clear_instruct, None, instruction) \
|
| 1230 |
-
.then(**retry_bot_args, api_name='retry_bot') \
|
| 1231 |
-
.then(**score_args, api_name='retry_bot_score') \
|
| 1232 |
-
.then(**retry_bot_args2, api_name='retry_bot2') \
|
| 1233 |
-
.then(**score_args2, api_name='retry_bot_score2') \
|
| 1234 |
.then(clear_torch_cache)
|
| 1235 |
-
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
|
| 1236 |
-
.then(**score_args, api_name='undo_score') \
|
| 1237 |
-
.then(**undo_user_args2, queue=stream_output, api_name='undo2') \
|
| 1238 |
-
.then(**score_args2, api_name='undo_score2') \
|
| 1239 |
.then(clear_instruct, None, instruction)
|
| 1240 |
else:
|
| 1241 |
-
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
|
| 1242 |
-
.then(**user_args2, queue=stream_output, api_name='instruction2') \
|
| 1243 |
.then(clear_instruct, None, instruction) \
|
| 1244 |
-
.then(**bot_args, api_name='instruction_bot') \
|
| 1245 |
-
.then(**bot_args2, api_name='instruction_bot2') \
|
| 1246 |
.then(clear_torch_cache)
|
| 1247 |
-
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
|
| 1248 |
-
.then(**user_args2, queue=stream_output, api_name='submit2') \
|
| 1249 |
.then(clear_instruct, None, instruction) \
|
| 1250 |
-
.then(**bot_args, api_name='submit_bot') \
|
| 1251 |
-
.then(**bot_args2, api_name='submit_bot2') \
|
| 1252 |
.then(clear_torch_cache)
|
| 1253 |
-
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
|
| 1254 |
-
.then(**user_args2, queue=stream_output, api_name='retry2') \
|
| 1255 |
.then(clear_instruct, None, instruction) \
|
| 1256 |
-
.then(**retry_bot_args, api_name='retry_bot') \
|
| 1257 |
-
.then(**retry_bot_args2, api_name='retry_bot2') \
|
| 1258 |
.then(clear_torch_cache)
|
| 1259 |
-
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
|
| 1260 |
-
.then(**undo_user_args2, queue=stream_output, api_name='undo2')
|
| 1261 |
|
| 1262 |
# does both models
|
| 1263 |
-
clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \
|
| 1264 |
-
.then(lambda: None, None, text_output2, queue=False, api_name='clear2')
|
| 1265 |
# FIXME: compare
|
| 1266 |
submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
|
| 1267 |
-
outputs=text_output_nochat, api_name='submit_nochat') \
|
| 1268 |
-
.then(**score_args_nochat, api_name='instruction_bot_score_nochat') \
|
| 1269 |
.then(clear_torch_cache)
|
| 1270 |
|
| 1271 |
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
|
|
@@ -1380,7 +1396,7 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 1380 |
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
|
| 1381 |
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
|
| 1382 |
|
| 1383 |
-
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \
|
| 1384 |
.then(lambda: gr.update(visible=True), None, normal_block) \
|
| 1385 |
.then(**load_model_args).then(**prompt_update_args)
|
| 1386 |
|
|
@@ -1393,7 +1409,8 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 1393 |
def compare_prompt_fun(x):
|
| 1394 |
return gr.Dropdown.update(visible=x)
|
| 1395 |
|
| 1396 |
-
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2,
|
|
|
|
| 1397 |
.then(compare_column_fun, compare_checkbox, col_model2) \
|
| 1398 |
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
|
| 1399 |
.then(compare_textbox_fun, compare_checkbox, score_text2)
|
|
@@ -1402,28 +1419,29 @@ body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
|
|
| 1402 |
# callback for logging flagged input/output
|
| 1403 |
callback.setup(inputs_list + [text_output], "flagged_data_points")
|
| 1404 |
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
|
| 1405 |
-
api_name='flag')
|
| 1406 |
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
|
| 1407 |
-
api_name='flag_nochat')
|
| 1408 |
|
| 1409 |
def get_system_info():
|
| 1410 |
return gr.Textbox.update(value=system_info_print())
|
| 1411 |
|
| 1412 |
-
system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info')
|
| 1413 |
|
| 1414 |
# don't pass text_output, don't want to clear output, just stop it
|
| 1415 |
# FIXME: have to click once to stop output and second time to stop GPUs going
|
| 1416 |
stop_btn.click(lambda: None, None, None,
|
| 1417 |
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
|
| 1418 |
-
queue=False, api_name='stop').then(clear_torch_cache)
|
| 1419 |
-
demo.load(None,None,None,_js=dark_js)
|
| 1420 |
|
| 1421 |
-
demo.queue(concurrency_count=
|
| 1422 |
favicon_path = "h2o-logo.svg"
|
| 1423 |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
|
| 1424 |
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
|
| 1425 |
print("Started GUI", flush=True)
|
| 1426 |
-
|
|
|
|
| 1427 |
|
| 1428 |
|
| 1429 |
input_args_list = ['model_state']
|
|
|
|
| 83 |
# set to True to load --base_model after client logs in,
|
| 84 |
# to be able to free GPU memory when model is swapped
|
| 85 |
login_mode_if_model0: bool = False,
|
| 86 |
+
block_gradio_exit: bool = True,
|
| 87 |
+
concurrency_count: int = 1,
|
| 88 |
+
api_open: bool = False, # don't let API skip queue
|
| 89 |
+
allow_api: bool = True,
|
| 90 |
|
| 91 |
sanitize_user_prompt: bool = True,
|
| 92 |
sanitize_bot_response: bool = True,
|
|
|
|
| 120 |
# must override share if in spaces
|
| 121 |
share = False
|
| 122 |
save_dir = os.getenv('SAVE_DIR', save_dir)
|
| 123 |
+
score_model = os.getenv('SCORE_MODEL', score_model)
|
| 124 |
+
if score_model == 'None':
|
| 125 |
+
score_model = ''
|
| 126 |
+
concurrency_count = int(os.getenv('CONCURRENCY_COUNT', concurrency_count))
|
| 127 |
+
api_open = bool(int(os.getenv('API_OPEN', api_open)))
|
| 128 |
+
allow_api = bool(int(os.getenv('ALLOW_API', allow_api)))
|
| 129 |
|
| 130 |
# get defaults
|
| 131 |
model_lower = base_model.lower()
|
|
|
|
| 176 |
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
|
| 177 |
output = data[i]['conversations'][turn_start + 1]['value']
|
| 178 |
examplenew = example1.copy()
|
| 179 |
+
assert not chat, "No gradio must use chat=False, uses nochat instruct"
|
| 180 |
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
|
| 181 |
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
|
| 182 |
examplenew[eval_func_param_names.index('context')] = '' # no context
|
|
|
|
| 538 |
|
| 539 |
def go_gradio(**kwargs):
|
| 540 |
# get default model
|
| 541 |
+
allow_api = kwargs['allow_api']
|
| 542 |
all_kwargs = kwargs.copy()
|
| 543 |
all_kwargs.update(locals())
|
| 544 |
if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
|
|
|
|
| 737 |
placeholder=kwargs['placeholder_input'])
|
| 738 |
submit_nochat = gr.Button("Submit")
|
| 739 |
flag_btn_nochat = gr.Button("Flag")
|
| 740 |
+
if not kwargs['auto_score']:
|
| 741 |
+
with gr.Column(visible=kwargs['score_model']):
|
| 742 |
+
score_btn_nochat = gr.Button("Score last prompt & response")
|
| 743 |
+
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
| 744 |
+
else:
|
| 745 |
+
with gr.Column(visible=kwargs['score_model']):
|
| 746 |
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
|
| 747 |
col_chat = gr.Column(visible=kwargs['chat'])
|
| 748 |
with col_chat:
|
|
|
|
| 762 |
with gr.Row():
|
| 763 |
clear = gr.Button("New Conversation")
|
| 764 |
flag_btn = gr.Button("Flag")
|
| 765 |
+
if not kwargs['auto_score']: # FIXME: For checkbox model2
|
| 766 |
+
with gr.Column(visible=kwargs['score_model']):
|
| 767 |
+
with gr.Row():
|
| 768 |
+
score_btn = gr.Button("Score last prompt & response").style(
|
| 769 |
+
full_width=False, size='sm')
|
| 770 |
+
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
| 771 |
+
score_res2 = gr.Row(visible=False)
|
| 772 |
+
with score_res2:
|
| 773 |
+
score_btn2 = gr.Button("Score last prompt & response 2").style(
|
| 774 |
+
full_width=False, size='sm')
|
| 775 |
+
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
|
| 776 |
+
else:
|
| 777 |
+
with gr.Column(visible=kwargs['score_model']):
|
| 778 |
score_text = gr.Textbox("Response Score: NA", show_label=False)
|
| 779 |
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
|
| 780 |
retry = gr.Button("Regenerate")
|
|
|
|
| 953 |
fun = partial(evaluate,
|
| 954 |
**kwargs_evaluate)
|
| 955 |
fun2 = partial(evaluate,
|
|
|
|
| 956 |
**kwargs_evaluate)
|
| 957 |
|
| 958 |
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
|
|
|
|
| 963 |
None,
|
| 964 |
None,
|
| 965 |
_js=dark_js,
|
| 966 |
+
api_name="dark" if allow_api else None,
|
| 967 |
)
|
| 968 |
|
| 969 |
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
|
|
|
|
| 976 |
def context_fun(x):
|
| 977 |
return gr.Textbox.update(visible=not x)
|
| 978 |
|
| 979 |
+
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
|
| 980 |
.then(col_chat_fun, chat, col_chat) \
|
| 981 |
.then(context_fun, chat, context)
|
| 982 |
|
|
|
|
| 1052 |
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
|
| 1053 |
return 'Response Score: {:.1%}'.format(score)
|
| 1054 |
|
| 1055 |
+
def noop_score_last_response(*args, **kwargs):
|
| 1056 |
+
return "Response Score: Disabled"
|
| 1057 |
if kwargs['score_model']:
|
| 1058 |
+
score_fun = score_last_response
|
| 1059 |
+
else:
|
| 1060 |
+
score_fun = noop_score_last_response
|
| 1061 |
+
|
| 1062 |
+
score_args = dict(fn=score_fun,
|
| 1063 |
+
inputs=inputs_list + [text_output],
|
| 1064 |
+
outputs=[score_text],
|
| 1065 |
+
)
|
| 1066 |
+
score_args2 = dict(fn=partial(score_fun, model2=True),
|
| 1067 |
+
inputs=inputs_list + [text_output2],
|
| 1068 |
+
outputs=[score_text2],
|
| 1069 |
+
)
|
| 1070 |
|
| 1071 |
+
score_args_nochat = dict(fn=partial(score_fun, nochat=True),
|
| 1072 |
+
inputs=inputs_list + [text_output_nochat],
|
| 1073 |
+
outputs=[score_text_nochat],
|
| 1074 |
+
)
|
| 1075 |
+
if not kwargs['auto_score']:
|
| 1076 |
+
score_event = score_btn.click(**score_args, queue=stream_output, api_name='score' if allow_api else None) \
|
| 1077 |
+
.then(**score_args2, queue=stream_output, api_name='score2' if allow_api else None)
|
| 1078 |
+
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
|
| 1079 |
+
api_name='score_nochat' if allow_api else None)
|
| 1080 |
|
| 1081 |
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
|
| 1082 |
"""
|
|
|
|
| 1224 |
if kwargs['auto_score']:
|
| 1225 |
# in case 2nd model, consume instruction first, so can clear quickly
|
| 1226 |
# bot doesn't consume instruction itself, just history from user, so why works
|
| 1227 |
+
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction' if allow_api else None) \
|
| 1228 |
+
.then(**user_args2, queue=stream_output, api_name='instruction2' if allow_api else None) \
|
| 1229 |
.then(clear_instruct, None, instruction) \
|
| 1230 |
+
.then(**bot_args, api_name='instruction_bot' if allow_api else None) \
|
| 1231 |
+
.then(**score_args, api_name='instruction_bot_score' if allow_api else None) \
|
| 1232 |
+
.then(**bot_args2, api_name='instruction_bot2' if allow_api else None) \
|
| 1233 |
+
.then(**score_args2, api_name='instruction_bot_score2' if allow_api else None) \
|
| 1234 |
.then(clear_torch_cache)
|
| 1235 |
+
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit' if allow_api else None) \
|
| 1236 |
+
.then(**user_args2, queue=stream_output, api_name='submit2' if allow_api else None) \
|
| 1237 |
+
.then(**bot_args, api_name='submit_bot' if allow_api else None) \
|
| 1238 |
.then(clear_instruct, None, instruction) \
|
| 1239 |
+
.then(**score_args, api_name='submit_bot_score' if allow_api else None) \
|
| 1240 |
+
.then(**bot_args2, api_name='submit_bot2' if allow_api else None) \
|
| 1241 |
+
.then(**score_args2, api_name='submit_bot_score2' if allow_api else None) \
|
| 1242 |
.then(clear_torch_cache)
|
| 1243 |
+
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry' if allow_api else None) \
|
| 1244 |
+
.then(**user_args2, queue=stream_output, api_name='retry2' if allow_api else None) \
|
| 1245 |
.then(clear_instruct, None, instruction) \
|
| 1246 |
+
.then(**retry_bot_args, api_name='retry_bot' if allow_api else None) \
|
| 1247 |
+
.then(**score_args, api_name='retry_bot_score' if allow_api else None) \
|
| 1248 |
+
.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None) \
|
| 1249 |
+
.then(**score_args2, api_name='retry_bot_score2' if allow_api else None) \
|
| 1250 |
.then(clear_torch_cache)
|
| 1251 |
+
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo' if allow_api else None) \
|
| 1252 |
+
.then(**score_args, api_name='undo_score' if allow_api else None) \
|
| 1253 |
+
.then(**undo_user_args2, queue=stream_output, api_name='undo2' if allow_api else None) \
|
| 1254 |
+
.then(**score_args2, api_name='undo_score2' if allow_api else None) \
|
| 1255 |
.then(clear_instruct, None, instruction)
|
| 1256 |
else:
|
| 1257 |
+
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction' if allow_api else None) \
|
| 1258 |
+
.then(**user_args2, queue=stream_output, api_name='instruction2' if allow_api else None) \
|
| 1259 |
.then(clear_instruct, None, instruction) \
|
| 1260 |
+
.then(**bot_args, api_name='instruction_bot' if allow_api else None) \
|
| 1261 |
+
.then(**bot_args2, api_name='instruction_bot2' if allow_api else None) \
|
| 1262 |
.then(clear_torch_cache)
|
| 1263 |
+
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit' if allow_api else None) \
|
| 1264 |
+
.then(**user_args2, queue=stream_output, api_name='submit2' if allow_api else None) \
|
| 1265 |
.then(clear_instruct, None, instruction) \
|
| 1266 |
+
.then(**bot_args, api_name='submit_bot' if allow_api else None) \
|
| 1267 |
+
.then(**bot_args2, api_name='submit_bot2' if allow_api else None) \
|
| 1268 |
.then(clear_torch_cache)
|
| 1269 |
+
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry' if allow_api else None) \
|
| 1270 |
+
.then(**user_args2, queue=stream_output, api_name='retry2' if allow_api else None) \
|
| 1271 |
.then(clear_instruct, None, instruction) \
|
| 1272 |
+
.then(**retry_bot_args, api_name='retry_bot' if allow_api else None) \
|
| 1273 |
+
.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None) \
|
| 1274 |
.then(clear_torch_cache)
|
| 1275 |
+
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo' if allow_api else None) \
|
| 1276 |
+
.then(**undo_user_args2, queue=stream_output, api_name='undo2' if allow_api else None)
|
| 1277 |
|
| 1278 |
# does both models
|
| 1279 |
+
clear.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \
|
| 1280 |
+
.then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None)
|
| 1281 |
# FIXME: compare
|
| 1282 |
submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
|
| 1283 |
+
outputs=text_output_nochat, api_name='submit_nochat' if allow_api else None) \
|
| 1284 |
+
.then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None) \
|
| 1285 |
.then(clear_torch_cache)
|
| 1286 |
|
| 1287 |
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
|
|
|
|
| 1396 |
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
|
| 1397 |
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
|
| 1398 |
|
| 1399 |
+
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None) \
|
| 1400 |
.then(lambda: gr.update(visible=True), None, normal_block) \
|
| 1401 |
.then(**load_model_args).then(**prompt_update_args)
|
| 1402 |
|
|
|
|
| 1409 |
def compare_prompt_fun(x):
|
| 1410 |
return gr.Dropdown.update(visible=x)
|
| 1411 |
|
| 1412 |
+
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2,
|
| 1413 |
+
api_name="compare_checkbox" if allow_api else None) \
|
| 1414 |
.then(compare_column_fun, compare_checkbox, col_model2) \
|
| 1415 |
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
|
| 1416 |
.then(compare_textbox_fun, compare_checkbox, score_text2)
|
|
|
|
| 1419 |
# callback for logging flagged input/output
|
| 1420 |
callback.setup(inputs_list + [text_output], "flagged_data_points")
|
| 1421 |
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
|
| 1422 |
+
api_name='flag' if allow_api else None)
|
| 1423 |
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
|
| 1424 |
+
api_name='flag_nochat' if allow_api else None)
|
| 1425 |
|
| 1426 |
def get_system_info():
|
| 1427 |
return gr.Textbox.update(value=system_info_print())
|
| 1428 |
|
| 1429 |
+
system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info' if allow_api else None)
|
| 1430 |
|
| 1431 |
# don't pass text_output, don't want to clear output, just stop it
|
| 1432 |
# FIXME: have to click once to stop output and second time to stop GPUs going
|
| 1433 |
stop_btn.click(lambda: None, None, None,
|
| 1434 |
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
|
| 1435 |
+
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache)
|
| 1436 |
+
demo.load(None, None, None, _js=dark_js)
|
| 1437 |
|
| 1438 |
+
demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open'])
|
| 1439 |
favicon_path = "h2o-logo.svg"
|
| 1440 |
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
|
| 1441 |
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
|
| 1442 |
print("Started GUI", flush=True)
|
| 1443 |
+
if kwargs['block_gradio_exit']:
|
| 1444 |
+
demo.block_thread()
|
| 1445 |
|
| 1446 |
|
| 1447 |
input_args_list = ['model_state']
|
client_test.py
CHANGED
|
@@ -13,43 +13,69 @@ Currently, this will force model to be on a single GPU.
|
|
| 13 |
Then run this client as:
|
| 14 |
|
| 15 |
python client_test.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"""
|
| 17 |
|
| 18 |
debug = False
|
| 19 |
|
| 20 |
import os
|
| 21 |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# streaming output is supported, loops over and outputs each generation in streaming mode
|
| 32 |
-
# but leave stream_output=False for simple input/output mode
|
| 33 |
-
stream_output = False
|
| 34 |
-
prompt_type = 'human_bot'
|
| 35 |
-
temperature = 0.1
|
| 36 |
-
top_p = 0.75
|
| 37 |
-
top_k = 40
|
| 38 |
-
num_beams = 1
|
| 39 |
-
max_new_tokens = 50
|
| 40 |
-
min_new_tokens = 0
|
| 41 |
-
early_stopping = False
|
| 42 |
-
max_time = 20
|
| 43 |
-
repetition_penalty = 1.0
|
| 44 |
-
num_return_sequences = 1
|
| 45 |
-
do_sample = True
|
| 46 |
-
# only these 2 below used if pass chat=False
|
| 47 |
-
chat = False
|
| 48 |
-
instruction_nochat = "Who are you?"
|
| 49 |
-
iinput_nochat = ''
|
| 50 |
|
| 51 |
|
| 52 |
def test_client_basic():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
args = [instruction,
|
| 54 |
iinput,
|
| 55 |
context,
|
|
@@ -71,12 +97,14 @@ def test_client_basic():
|
|
| 71 |
iinput_nochat,
|
| 72 |
]
|
| 73 |
api_name = '/submit_nochat'
|
|
|
|
| 74 |
res = client.predict(
|
| 75 |
*tuple(args),
|
| 76 |
api_name=api_name,
|
| 77 |
)
|
| 78 |
res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res))
|
| 79 |
print(res_dict)
|
|
|
|
| 80 |
|
| 81 |
|
| 82 |
import markdown # pip install markdown
|
|
|
|
| 13 |
Then run this client as:
|
| 14 |
|
| 15 |
python client_test.py
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
For HF spaces:
|
| 20 |
+
|
| 21 |
+
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py
|
| 22 |
+
|
| 23 |
+
Result:
|
| 24 |
+
|
| 25 |
+
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space ✔
|
| 26 |
+
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.'}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
For demo:
|
| 30 |
+
|
| 31 |
+
HOST="https://gpt.h2o.ai" python client_test.py
|
| 32 |
+
|
| 33 |
+
Result:
|
| 34 |
+
|
| 35 |
+
Loaded as API: https://gpt.h2o.ai ✔
|
| 36 |
+
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.'}
|
| 37 |
+
|
| 38 |
"""
|
| 39 |
|
| 40 |
debug = False
|
| 41 |
|
| 42 |
import os
|
| 43 |
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_client():
|
| 47 |
+
from gradio_client import Client
|
| 48 |
+
|
| 49 |
+
client = Client(os.getenv('HOST', "http://localhost:7860"))
|
| 50 |
+
if debug:
|
| 51 |
+
print(client.view_api(all_endpoints=True))
|
| 52 |
+
return client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
|
| 55 |
def test_client_basic():
|
| 56 |
+
instruction = '' # only for chat=True
|
| 57 |
+
iinput = '' # only for chat=True
|
| 58 |
+
context = ''
|
| 59 |
+
# streaming output is supported, loops over and outputs each generation in streaming mode
|
| 60 |
+
# but leave stream_output=False for simple input/output mode
|
| 61 |
+
stream_output = False
|
| 62 |
+
prompt_type = 'human_bot'
|
| 63 |
+
temperature = 0.1
|
| 64 |
+
top_p = 0.75
|
| 65 |
+
top_k = 40
|
| 66 |
+
num_beams = 1
|
| 67 |
+
max_new_tokens = 50
|
| 68 |
+
min_new_tokens = 0
|
| 69 |
+
early_stopping = False
|
| 70 |
+
max_time = 20
|
| 71 |
+
repetition_penalty = 1.0
|
| 72 |
+
num_return_sequences = 1
|
| 73 |
+
do_sample = True
|
| 74 |
+
# only these 2 below used if pass chat=False
|
| 75 |
+
chat = False
|
| 76 |
+
instruction_nochat = "Who are you?"
|
| 77 |
+
iinput_nochat = ''
|
| 78 |
+
|
| 79 |
args = [instruction,
|
| 80 |
iinput,
|
| 81 |
context,
|
|
|
|
| 97 |
iinput_nochat,
|
| 98 |
]
|
| 99 |
api_name = '/submit_nochat'
|
| 100 |
+
client = get_client()
|
| 101 |
res = client.predict(
|
| 102 |
*tuple(args),
|
| 103 |
api_name=api_name,
|
| 104 |
)
|
| 105 |
res_dict = dict(instruction_nochat=instruction_nochat, iinput_nochat=iinput_nochat, response=md_to_text(res))
|
| 106 |
print(res_dict)
|
| 107 |
+
return res_dict
|
| 108 |
|
| 109 |
|
| 110 |
import markdown # pip install markdown
|
finetune.py
CHANGED
|
@@ -765,7 +765,13 @@ Current Time: {}
|
|
| 765 |
|
| 766 |
PreInput = None
|
| 767 |
|
| 768 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 769 |
|
| 770 |
terminate_response = [start, PreResponse]
|
| 771 |
elif prompt_type in [3, "3", "dai_faq"]:
|
|
|
|
| 765 |
|
| 766 |
PreInput = None
|
| 767 |
|
| 768 |
+
if reduced:
|
| 769 |
+
# when making context, want it to appear as-if LLM generated, which starts with space after :
|
| 770 |
+
PreResponse = bot + ' '
|
| 771 |
+
else:
|
| 772 |
+
# normally LLM adds space after this, because was how trained.
|
| 773 |
+
# if add space here, non-unique tokenization will often make LLM produce wrong output
|
| 774 |
+
PreResponse = bot
|
| 775 |
|
| 776 |
terminate_response = [start, PreResponse]
|
| 777 |
elif prompt_type in [3, "3", "dai_faq"]:
|