fix: update accuracy for classification only
Browse files- detector/model.py +48 -36
detector/model.py
CHANGED
|
@@ -150,27 +150,29 @@ class FontDetector(ptl.LightningModule):
|
|
| 150 |
self.font_accur_train = torchmetrics.Accuracy(
|
| 151 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 152 |
)
|
| 153 |
-
self.direction_accur_train = torchmetrics.Accuracy(
|
| 154 |
-
task="multiclass", num_classes=2
|
| 155 |
-
)
|
| 156 |
self.font_accur_val = torchmetrics.Accuracy(
|
| 157 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 158 |
)
|
| 159 |
-
self.direction_accur_val = torchmetrics.Accuracy(
|
| 160 |
-
task="multiclass", num_classes=2
|
| 161 |
-
)
|
| 162 |
self.font_accur_test = torchmetrics.Accuracy(
|
| 163 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 164 |
)
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
self.lr = lr
|
| 169 |
self.betas = betas
|
| 170 |
self.num_warmup_iters = num_warmup_iters
|
| 171 |
self.num_iters = num_iters
|
| 172 |
self.num_epochs = num_epochs
|
| 173 |
self.load_epoch = 0
|
|
|
|
| 174 |
|
| 175 |
def forward(self, x):
|
| 176 |
return self.model(x)
|
|
@@ -188,24 +190,26 @@ class FontDetector(ptl.LightningModule):
|
|
| 188 |
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
|
| 189 |
sync_dist=True,
|
| 190 |
)
|
| 191 |
-
self.
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
| 198 |
return {"loss": loss}
|
| 199 |
|
| 200 |
def on_train_epoch_end(self) -> None:
|
| 201 |
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
|
| 202 |
-
self.log(
|
| 203 |
-
"train_direction_accur",
|
| 204 |
-
self.direction_accur_train.compute(),
|
| 205 |
-
sync_dist=True,
|
| 206 |
-
)
|
| 207 |
self.font_accur_train.reset()
|
| 208 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
def validation_step(
|
| 211 |
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
|
|
@@ -215,18 +219,22 @@ class FontDetector(ptl.LightningModule):
|
|
| 215 |
loss = self.loss(y_hat, y)
|
| 216 |
self.log("val_loss", loss, prog_bar=True, sync_dist=True)
|
| 217 |
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
|
| 218 |
-
self.
|
| 219 |
-
|
| 220 |
-
|
|
|
|
| 221 |
return {"loss": loss}
|
| 222 |
|
| 223 |
def on_validation_epoch_end(self):
|
| 224 |
self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True)
|
| 225 |
-
self.log(
|
| 226 |
-
"val_direction_accur", self.direction_accur_val.compute(), sync_dist=True
|
| 227 |
-
)
|
| 228 |
self.font_accur_val.reset()
|
| 229 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
|
| 231 |
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
|
| 232 |
X, y = batch
|
|
@@ -234,18 +242,22 @@ class FontDetector(ptl.LightningModule):
|
|
| 234 |
loss = self.loss(y_hat, y)
|
| 235 |
self.log("test_loss", loss, prog_bar=True, sync_dist=True)
|
| 236 |
self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
|
| 237 |
-
self.
|
| 238 |
-
|
| 239 |
-
|
|
|
|
| 240 |
return {"loss": loss}
|
| 241 |
|
| 242 |
def on_test_epoch_end(self) -> None:
|
| 243 |
self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True)
|
| 244 |
-
self.log(
|
| 245 |
-
"test_direction_accur", self.direction_accur_test.compute(), sync_dist=True
|
| 246 |
-
)
|
| 247 |
self.font_accur_test.reset()
|
| 248 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
def configure_optimizers(self):
|
| 251 |
optimizer = torch.optim.Adam(
|
|
|
|
| 150 |
self.font_accur_train = torchmetrics.Accuracy(
|
| 151 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 152 |
)
|
|
|
|
|
|
|
|
|
|
| 153 |
self.font_accur_val = torchmetrics.Accuracy(
|
| 154 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 155 |
)
|
|
|
|
|
|
|
|
|
|
| 156 |
self.font_accur_test = torchmetrics.Accuracy(
|
| 157 |
task="multiclass", num_classes=config.FONT_COUNT
|
| 158 |
)
|
| 159 |
+
if not font_classification_only:
|
| 160 |
+
self.direction_accur_train = torchmetrics.Accuracy(
|
| 161 |
+
task="multiclass", num_classes=2
|
| 162 |
+
)
|
| 163 |
+
self.direction_accur_val = torchmetrics.Accuracy(
|
| 164 |
+
task="multiclass", num_classes=2
|
| 165 |
+
)
|
| 166 |
+
self.direction_accur_test = torchmetrics.Accuracy(
|
| 167 |
+
task="multiclass", num_classes=2
|
| 168 |
+
)
|
| 169 |
self.lr = lr
|
| 170 |
self.betas = betas
|
| 171 |
self.num_warmup_iters = num_warmup_iters
|
| 172 |
self.num_iters = num_iters
|
| 173 |
self.num_epochs = num_epochs
|
| 174 |
self.load_epoch = 0
|
| 175 |
+
self.font_classification_only = font_classification_only
|
| 176 |
|
| 177 |
def forward(self, x):
|
| 178 |
return self.model(x)
|
|
|
|
| 190 |
self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
|
| 191 |
sync_dist=True,
|
| 192 |
)
|
| 193 |
+
if not self.font_classification_only:
|
| 194 |
+
self.log(
|
| 195 |
+
"train_direction_accur",
|
| 196 |
+
self.direction_accur_train(
|
| 197 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
|
| 198 |
+
),
|
| 199 |
+
sync_dist=True,
|
| 200 |
+
)
|
| 201 |
return {"loss": loss}
|
| 202 |
|
| 203 |
def on_train_epoch_end(self) -> None:
|
| 204 |
self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
self.font_accur_train.reset()
|
| 206 |
+
if not self.font_classification_only:
|
| 207 |
+
self.log(
|
| 208 |
+
"train_direction_accur",
|
| 209 |
+
self.direction_accur_train.compute(),
|
| 210 |
+
sync_dist=True,
|
| 211 |
+
)
|
| 212 |
+
self.direction_accur_train.reset()
|
| 213 |
|
| 214 |
def validation_step(
|
| 215 |
self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
|
|
|
|
| 219 |
loss = self.loss(y_hat, y)
|
| 220 |
self.log("val_loss", loss, prog_bar=True, sync_dist=True)
|
| 221 |
self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
|
| 222 |
+
if not self.font_classification_only:
|
| 223 |
+
self.direction_accur_val.update(
|
| 224 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
|
| 225 |
+
)
|
| 226 |
return {"loss": loss}
|
| 227 |
|
| 228 |
def on_validation_epoch_end(self):
|
| 229 |
self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True)
|
|
|
|
|
|
|
|
|
|
| 230 |
self.font_accur_val.reset()
|
| 231 |
+
if not self.font_classification_only:
|
| 232 |
+
self.log(
|
| 233 |
+
"val_direction_accur",
|
| 234 |
+
self.direction_accur_val.compute(),
|
| 235 |
+
sync_dist=True,
|
| 236 |
+
)
|
| 237 |
+
self.direction_accur_val.reset()
|
| 238 |
|
| 239 |
def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
|
| 240 |
X, y = batch
|
|
|
|
| 242 |
loss = self.loss(y_hat, y)
|
| 243 |
self.log("test_loss", loss, prog_bar=True, sync_dist=True)
|
| 244 |
self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
|
| 245 |
+
if not self.font_classification_only:
|
| 246 |
+
self.direction_accur_test.update(
|
| 247 |
+
y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
|
| 248 |
+
)
|
| 249 |
return {"loss": loss}
|
| 250 |
|
| 251 |
def on_test_epoch_end(self) -> None:
|
| 252 |
self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True)
|
|
|
|
|
|
|
|
|
|
| 253 |
self.font_accur_test.reset()
|
| 254 |
+
if not self.font_classification_only:
|
| 255 |
+
self.log(
|
| 256 |
+
"test_direction_accur",
|
| 257 |
+
self.direction_accur_test.compute(),
|
| 258 |
+
sync_dist=True,
|
| 259 |
+
)
|
| 260 |
+
self.direction_accur_test.reset()
|
| 261 |
|
| 262 |
def configure_optimizers(self):
|
| 263 |
optimizer = torch.optim.Adam(
|