File size: 5,237 Bytes
29efa50
 
 
 
 
 
 
 
c3f3bd0
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f3bd0
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f3bd0
 
 
 
 
 
 
 
29efa50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import os
import gradio as gr
from PIL import Image
from torchvision import transforms
from detector.model import *
from detector import config
from font_dataset.font import load_fonts, load_font_with_exclusion
from huggingface_hub import hf_hub_download

parser = argparse.ArgumentParser()
parser.add_argument(
    "-d",
    "--device",
    type=int,
    default=0,
    help="GPU devices to use (default: 0), -1 for CPU",
)
parser.add_argument(
    "-c",
    "--checkpoint",
    type=str,
    default=None,
    help="Trainer checkpoint path (default: None). Use link as huggingface://<user>/<repo>/<file> for huggingface.co models, currently only supports model file in the root directory.",
)
parser.add_argument(
    "-m",
    "--model",
    type=str,
    default="resnet18",
    choices=["resnet18", "resnet34", "resnet50", "resnet101", "deepfont"],
    help="Model to use (default: resnet18)",
)
parser.add_argument(
    "-f",
    "--font-classification-only",
    action="store_true",
    help="Font classification only (default: False)",
)
parser.add_argument(
    "-z",
    "--size",
    type=int,
    default=512,
    help="Model feature image input size (default: 512)",
)
parser.add_argument(
    "-s",
    "--share",
    action="store_true",
    help="Get public link via Gradio (default: False)",
)

args = parser.parse_args()

config.INPUT_SIZE = args.size
device = torch.device("cpu") if args.device == -1 else torch.device("cuda", args.device)

regression_use_tanh = False

if args.model == "resnet18":
    model = ResNet18Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet34":
    model = ResNet34Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet50":
    model = ResNet50Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "resnet101":
    model = ResNet101Regressor(regression_use_tanh=regression_use_tanh)
elif args.model == "deepfont":
    assert args.pretrained is False
    assert args.size == 105
    assert args.font_classification_only is True
    model = DeepFontBaseline()
else:
    raise NotImplementedError()

if torch.__version__ >= "2.0" and os.name == "posix":
    model = torch.compile(model)


if str(args.checkpoint).startswith("huggingface://"):
    args.checkpoint = args.checkpoint[14:]
    user, repo, file = args.checkpoint.split("/")
    repo = f"{user}/{repo}"
    args.checkpoint = hf_hub_download(repo, file)


detector = FontDetector(
    model=model,
    lambda_font=1,
    lambda_direction=1,
    lambda_regression=1,
    font_classification_only=args.font_classification_only,
    lr=1,
    betas=(1, 1),
    num_warmup_iters=1,
    num_iters=1e9,
    num_epochs=1e9,
)
detector.load_from_checkpoint(
    args.checkpoint,
    map_location=device,
    model=model,
    lambda_font=1,
    lambda_direction=1,
    lambda_regression=1,
    font_classification_only=args.font_classification_only,
    lr=1,
    betas=(1, 1),
    num_warmup_iters=1,
    num_iters=1e9,
    num_epochs=1e9,
)
detector = detector.to(device)
detector.eval()


transform = transforms.Compose(
    [
        transforms.Resize((512, 512)),
        transforms.ToTensor(),
    ]
)

print("Preparing fonts ...")
font_list, exclusion_rule = load_fonts()

font_list = list(filter(lambda x: not exclusion_rule(x), font_list))
font_list.sort(key=lambda x: x.path)

for i in range(len(font_list)):
    font_list[i].path = font_list[i].path[18:]  # remove ./dataset/fonts/./ prefix

font_demo_images = []

for i in range(len(font_list)):
    font_demo_images.append(Image.open(f"demo_fonts/{i}.jpg").convert("RGB"))


def recognize_font(image):
    transformed_image = transform(image)
    with torch.no_grad():
        transformed_image = transformed_image.to(device)
        output = detector(transformed_image.unsqueeze(0))
        prob = output[0][: config.FONT_COUNT].softmax(dim=0)

        indicies = torch.topk(prob, 9)[1]

        return [
            {font_list[i].path: float(prob[i]) for i in range(config.FONT_COUNT)},
            *[gr.Image.update(value=font_demo_images[indicies[i]]) for i in range(9)],
            *[
                gr.Markdown.update(
                    value=f"**Font Name**: {font_list[indicies[i]].path}"
                )
                for i in range(9)
            ],
        ]


def generate_grid(num_columns, num_rows):
    ret_images, ret_labels = [], []
    with gr.Column():
        for _ in range(num_rows):
            with gr.Row():
                for _ in range(num_columns):
                    with gr.Column():
                        ret_labels.append(gr.Markdown("**Font Name**"))
                        ret_images.append(gr.Image())
    return ret_images, ret_labels


with gr.Blocks() as demo:
    with gr.Column():
        with gr.Row():
            inp = gr.Image(type="pil", label="Input Image")
            out = gr.Label(num_top_classes=9, label="Output Font")
        font_demo_images_blocks, font_demo_labels_blocks = generate_grid(3, 3)

    submit_button = gr.Button(label="Submit")
    submit_button.click(
        fn=recognize_font,
        inputs=inp,
        outputs=[out, *font_demo_images_blocks, *font_demo_labels_blocks],
    )


demo.launch(share=args.share)