Spaces:
Build error
Build error
import torch | |
from librosa.filters import mel as librosa_mel_fn | |
from .audio_processing import dynamic_range_compression | |
from .audio_processing import dynamic_range_decompression | |
from .stft import STFT | |
from .utils import get_mask_from_lengths | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(LinearNorm, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class ConvNorm(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, | |
padding=None, dilation=1, bias=True, w_init_gain='linear'): | |
super(ConvNorm, self).__init__() | |
if padding is None: | |
assert(kernel_size % 2 == 1) | |
padding = int(dilation * (kernel_size - 1) / 2) | |
self.conv = torch.nn.Conv1d(in_channels, out_channels, | |
kernel_size=kernel_size, stride=stride, | |
padding=padding, dilation=dilation, | |
bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, signal): | |
conv_signal = self.conv(signal) | |
return conv_signal | |
class GlobalAvgPool(torch.nn.Module): | |
def __init__(self): | |
super(GlobalAvgPool, self).__init__() | |
def forward(self, x, lengths=None): | |
"""Average pooling across time steps (dim=1) with optionally lengths. | |
Args: | |
x: torch.Tensor of shape (N, T, ...) | |
lengths: None or torch.Tensor of shape (N,) | |
dim: dimension to pool | |
""" | |
if lengths is None: | |
return x.mean(dim=1, keepdim=False) | |
else: | |
mask = get_mask_from_lengths(lengths).type(x.type()).to(x.device) | |
mask_shape = list(mask.size()) + [1 for _ in range(x.ndimension()-2)] | |
mask = mask.reshape(*mask_shape) | |
numer = (x * mask).sum(dim=1, keepdim=False) | |
denom = mask.sum(dim=1, keepdim=False) | |
return numer / denom | |
class TacotronSTFT(torch.nn.Module): | |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | |
mel_fmax=8000.0): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
mel_basis = librosa_mel_fn( | |
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer('mel_basis', mel_basis) | |
def spectral_normalize(self, magnitudes): | |
output = dynamic_range_compression(magnitudes) | |
return output | |
def spectral_de_normalize(self, magnitudes): | |
output = dynamic_range_decompression(magnitudes) | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert(torch.min(y.data) >= -1) | |
assert(torch.max(y.data) <= 1) | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = self.spectral_normalize(mel_output) | |
return mel_output | |