from transformers import AutoTokenizer, AutoModelForSequenceClassification from scipy.special import expit import numpy as np import os # set up model auth_token = os.environ.get("TOKEN") or True tokenizer = AutoTokenizer.from_pretrained("guidecare/feelings_and_issues", use_auth_token=auth_token ) model = AutoModelForSequenceClassification.from_pretrained("guidecare/feelings_and_issues", use_auth_token=auth_token ) all_label_names = list(model.config.id2label.values()) def probs(text): probs = expit(model(**tokenizer([texts], return_tensors="pt", padding=True)).logits.detach().numpy()) return list(zip(all_label_names, probs[0])) iface = gr.Interface( fn=predict, inputs='What is going on with you', outputs='Our predictions', examples=[["This test tomorrow is really freaking me out."]] ) iface.launch()