import gradio as gr import torch import spaces from diffusers import FluxPipeline, FluxTransformer2DModel from PIL import Image from diffusers.utils import export_to_gif import uuid device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 def split_image(input_image, num_splits=4): # Create a list to store the output images output_images = [] # Split the image into four 256x256 sections for i in range(num_splits): left = i * 256 right = (i + 1) * 256 box = (left, 0, right, 256) output_images.append(input_image.crop(box)) return output_images pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", torch_dtype=torch_dtype ) pipe.to(device) @spaces.GPU def infer(prompt, seed, randomize_seed, num_inference_steps, progress=gr.Progress(track_tqdm=True)): prompt_template = f"A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is {prompt}" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=1, generator=torch.Generator(device).manual_seed(seed), height=height, width=width ).images[0] gif_name = f"{uuid.uuid4().hex}-flux.gif" export_to_gif(split_image(image, 4), gif_name, fps=4) return gif_name, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # FLUX.1 Schnell Animations Generate gifs with """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=4, ) gr.Examples( examples = examples, inputs = [prompt] ) gr.on( trigger=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.queue().launch()