Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import spaces
|
4 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel
|
5 |
+
from PIL import Image
|
6 |
+
from diffusers.utils import export_to_gif
|
7 |
+
import uuid
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
if torch.cuda.is_available():
|
12 |
+
torch_dtype = torch.bfloat16
|
13 |
+
else:
|
14 |
+
torch_dtype = torch.float32
|
15 |
+
|
16 |
+
def split_image(input_image, num_splits=4):
|
17 |
+
# Create a list to store the output images
|
18 |
+
output_images = []
|
19 |
+
|
20 |
+
# Split the image into four 256x256 sections
|
21 |
+
for i in range(num_splits):
|
22 |
+
left = i * 256
|
23 |
+
right = (i + 1) * 256
|
24 |
+
box = (left, 0, right, 256)
|
25 |
+
output_images.append(input_image.crop(box))
|
26 |
+
|
27 |
+
return output_images
|
28 |
+
|
29 |
+
pipe = FluxPipeline.from_pretrained(
|
30 |
+
"black-forest-labs/FLUX.1-schnell",
|
31 |
+
torch_dtype=torch_dtype
|
32 |
+
)
|
33 |
+
pipe.to(device)
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def infer(prompt, seed, randomize_seed, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
37 |
+
prompt_template = f"A side by side 4 frame image showing consecutive stills from a looped gif moving from left to right. The gif is {prompt}"
|
38 |
+
if randomize_seed:
|
39 |
+
seed = random.randint(0, MAX_SEED)
|
40 |
+
|
41 |
+
generator = torch.Generator().manual_seed(seed)
|
42 |
+
|
43 |
+
image = pipe(
|
44 |
+
prompt=prompt,
|
45 |
+
num_inference_steps=num_inference_steps,
|
46 |
+
num_images_per_prompt=1,
|
47 |
+
generator=torch.Generator(device).manual_seed(seed),
|
48 |
+
height=height,
|
49 |
+
width=width
|
50 |
+
).images[0]
|
51 |
+
gif_name = f"{uuid.uuid4().hex}-flux.gif"
|
52 |
+
export_to_gif(split_image(image, 4), gif_name, fps=4)
|
53 |
+
return gif_name, seed
|
54 |
+
|
55 |
+
examples = [
|
56 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
57 |
+
"An astronaut riding a green horse",
|
58 |
+
"A delicious ceviche cheesecake slice",
|
59 |
+
]
|
60 |
+
|
61 |
+
css="""
|
62 |
+
#col-container {
|
63 |
+
margin: 0 auto;
|
64 |
+
max-width: 640px;
|
65 |
+
}
|
66 |
+
"""
|
67 |
+
|
68 |
+
with gr.Blocks(css=css) as demo:
|
69 |
+
|
70 |
+
with gr.Column(elem_id="col-container"):
|
71 |
+
gr.Markdown(f"""
|
72 |
+
# FLUX.1 Schnell Animations
|
73 |
+
Generate gifs with
|
74 |
+
""")
|
75 |
+
|
76 |
+
with gr.Row():
|
77 |
+
|
78 |
+
prompt = gr.Text(
|
79 |
+
label="Prompt",
|
80 |
+
show_label=False,
|
81 |
+
max_lines=1,
|
82 |
+
placeholder="Enter your prompt",
|
83 |
+
container=False,
|
84 |
+
)
|
85 |
+
|
86 |
+
run_button = gr.Button("Run", scale=0)
|
87 |
+
|
88 |
+
result = gr.Image(label="Result", show_label=False)
|
89 |
+
|
90 |
+
with gr.Accordion("Advanced Settings", open=False):
|
91 |
+
|
92 |
+
seed = gr.Slider(
|
93 |
+
label="Seed",
|
94 |
+
minimum=0,
|
95 |
+
maximum=MAX_SEED,
|
96 |
+
step=1,
|
97 |
+
value=0,
|
98 |
+
)
|
99 |
+
|
100 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
101 |
+
|
102 |
+
num_inference_steps = gr.Slider(
|
103 |
+
label="Number of inference steps",
|
104 |
+
minimum=1,
|
105 |
+
maximum=12,
|
106 |
+
step=1,
|
107 |
+
value=4,
|
108 |
+
)
|
109 |
+
|
110 |
+
|
111 |
+
gr.Examples(
|
112 |
+
examples = examples,
|
113 |
+
inputs = [prompt]
|
114 |
+
)
|
115 |
+
gr.on(
|
116 |
+
trigger=[run_button.click, prompt.submit],
|
117 |
+
fn = infer,
|
118 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
119 |
+
outputs = [result, seed]
|
120 |
+
)
|
121 |
+
|
122 |
+
demo.queue().launch()
|