Spaces:
Runtime error
Runtime error
add dowloader
Browse files
app.py
CHANGED
@@ -1,20 +1,20 @@
|
|
1 |
-
import torch.multiprocessing as mp
|
2 |
-
import multiprocessing as mp2
|
3 |
-
from huggingface_hub import login
|
4 |
-
|
5 |
-
mp.set_start_method('spawn', force=True)
|
6 |
-
mp2.set_start_method('spawn', force=True)
|
7 |
|
|
|
|
|
8 |
import spaces
|
9 |
import gradio as gr
|
10 |
from PIL import Image
|
11 |
import os
|
12 |
|
13 |
import random
|
14 |
-
login()
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU(duration=300)
|
17 |
-
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip
|
18 |
from src.flux.xflux_pipeline import XFluxPipeline
|
19 |
def run_xflux_pipeline(
|
20 |
prompt, image, repo_id, name, device,
|
@@ -111,9 +111,7 @@ def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use
|
|
111 |
neg_prompt=neg_prompt,
|
112 |
image=image,
|
113 |
negative_image=negative_image,
|
114 |
-
lora_name=lora_name,
|
115 |
lora_weight=lora_weight,
|
116 |
-
lora_repo_id=lora_path,
|
117 |
control_type="depth" if use_depth else "hed" if use_hed else "canny",
|
118 |
repo_id="XLabs-AI/flux-controlnet-collections",
|
119 |
name="flux-depth-controlnet.safetensors",
|
@@ -209,8 +207,6 @@ with gr.Blocks(css=custom_css) as demo:
|
|
209 |
use_depth = gr.Checkbox(label="Use depth")
|
210 |
use_hed = gr.Checkbox(label="Use hed")
|
211 |
use_lora = gr.Checkbox(label="Use LORA", value=True)
|
212 |
-
lora_path = gr.Textbox(label="LoraPath", value="XLabs-AI/flux-lora-collection")
|
213 |
-
lora_name = gr.Textbox(label="LoraName", value="realism_lora.safetensors")
|
214 |
lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
|
215 |
|
216 |
true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
|
@@ -223,7 +219,7 @@ with gr.Blocks(css=custom_css) as demo:
|
|
223 |
with gr.Column(scale=2, elem_classes="app"):
|
224 |
output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0)
|
225 |
|
226 |
-
submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip,
|
227 |
|
228 |
if __name__ == '__main__':
|
229 |
demo.launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from huggingface_hub import hf_hub_download, login
|
3 |
+
import os
|
4 |
import spaces
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
7 |
import os
|
8 |
|
9 |
import random
|
10 |
+
login(os.getenv("HF_TOKEN"))
|
11 |
+
hf_hub_download("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors")
|
12 |
+
hf_hub_download("XLabs-AI/flux-controlnet-collections", "flux-depth-controlnet.safetensor")
|
13 |
+
hf_hub_download("XLabs-AI/flux-ip-adapter", "flux-ip-adapter.safetensors")
|
14 |
+
hf_hub_download("XLabs-AI/flux-controlnet-canny", "controlnet.safetensors")
|
15 |
|
16 |
@spaces.GPU(duration=300)
|
17 |
+
def process_image(image, prompt, steps, use_lora, use_controlnet, use_depth, use_hed, use_ip lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg):
|
18 |
from src.flux.xflux_pipeline import XFluxPipeline
|
19 |
def run_xflux_pipeline(
|
20 |
prompt, image, repo_id, name, device,
|
|
|
111 |
neg_prompt=neg_prompt,
|
112 |
image=image,
|
113 |
negative_image=negative_image,
|
|
|
114 |
lora_weight=lora_weight,
|
|
|
115 |
control_type="depth" if use_depth else "hed" if use_hed else "canny",
|
116 |
repo_id="XLabs-AI/flux-controlnet-collections",
|
117 |
name="flux-depth-controlnet.safetensors",
|
|
|
207 |
use_depth = gr.Checkbox(label="Use depth")
|
208 |
use_hed = gr.Checkbox(label="Use hed")
|
209 |
use_lora = gr.Checkbox(label="Use LORA", value=True)
|
|
|
|
|
210 |
lora_weight = gr.Slider(step=0.1, minimum=0, maximum=1, value=0.7, label="Lora Weight")
|
211 |
|
212 |
true_gs = gr.Slider(step=0.1, minimum=0, maximum=10, value=3.5, label="TrueGs")
|
|
|
219 |
with gr.Column(scale=2, elem_classes="app"):
|
220 |
output = gr.Gallery(label="Galery output", elem_classes="galery", selected_index=0)
|
221 |
|
222 |
+
submit_btn.click(process_image, inputs=[input_image, prompt, steps, use_lora, controlnet, use_depth, use_hed, use_ip, lora_weight, negative_image, neg_prompt, true_gs, guidance, cfg], outputs=output)
|
223 |
|
224 |
if __name__ == '__main__':
|
225 |
demo.launch(share=True, debug=True)
|