File size: 1,794 Bytes
6559825
 
b5ab290
 
 
 
1598176
6559825
b5ab290
 
 
 
6559825
1598176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5ab290
1598176
 
b5ab290
6559825
1598176
 
 
 
 
 
 
 
 
 
 
 
b5ab290
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch
from transformers import CLIPProcessor, CLIPModel
from torch import nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms

# Load CLIP model and processor
model_name = "openai/clip-vit-base-patch16"
clip_model = CLIPModel.from_pretrained(model_name)
clip_processor = CLIPProcessor.from_pretrained(model_name)

# Define a simple generator network
class SimpleGenerator(nn.Module):
    def __init__(self):
        super(SimpleGenerator, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(512, 1024),
            nn.ReLU(),
            nn.Linear(1024, 256*256*3),  # Output image pixels
            nn.Tanh()  # Normalize output between -1 and 1
        )

    def forward(self, z):
        x = self.fc(z)
        x = x.view(256, 256, 3)  # Reshape to image format
        return x

# Initialize the generator model
generator = SimpleGenerator()

# Function to generate an image based on text input
def generate_image_from_text(text_input):
    # Preprocess text input using CLIP
    inputs = clip_processor(text=[text_input], return_tensors="pt", padding=True)
    text_features = clip_model.get_text_features(**inputs)

    # Generate image tensor
    with torch.no_grad():
        generated_image_tensor = generator(text_features)

    # Normalize tensor to (0, 255)
    generated_image = (generated_image_tensor - generated_image_tensor.min()) / (generated_image_tensor.max() - generated_image_tensor.min())
    generated_image = (generated_image * 255).cpu().numpy().astype(np.uint8)

    # Convert to PIL Image
    image = Image.fromarray(generated_image)

    return image

# Gradio interface
iface = gr.Interface(fn=generate_image_from_text, inputs="text", outputs="image", live=True)

iface.launch()