from sentence_transformers import SentenceTransformer, util from PIL import Image import gradio as gr def get_image_embedding(image): image_model = SentenceTransformer('clip-ViT-B-32') # Load and preprocess the image image = Image.open(BytesIO(image)) img_emb = image_model.encode(image) return {"prediction": img_emb} image_input = gr.inputs.Image() label_output = gr.outputs.Label() gr.Interface(fn=get_image_embedding, inputs=image_input, outputs=label_output).launch()