ttm / app.py
gschurck's picture
Update app.py
fb76362
raw
history blame
545 Bytes
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from io import BytesIO
import gradio as gr
import requests
def get_image_embedding(image):
image_model = SentenceTransformer('clip-ViT-B-32')
# Load and preprocess the image
img_emb = image_model.encode(image)
print(img_emb)
print(type(img_emb))
return {"prediction": img_emb.tolist()}
image_input = gr.Image(type="pil")
label_output = gr.JSON()
gr.Interface(fn=get_image_embedding, inputs=image_input, outputs=label_output).launch()