ttm / app.py
gschurck's picture
Update app.py
2f5bf30
raw
history blame
907 Bytes
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from io import BytesIO
import gradio as gr
import requests
def get_image_embedding(image):
image_model = SentenceTransformer('clip-ViT-B-32')
# Load and preprocess the image
img_emb = image_model.encode(image)
print(img_emb)
print(type(img_emb))
return {"embedding": img_emb.tolist()}
def get_text_embedding(text):
multilingual_text_model = SentenceTransformer('clip-ViT-B-32-multilingual-v1')
text_emb = multilingual_text_model.encode(text)
return {"embedding": text_emb}
image_embedding = gr.Interface(fn=get_image_embedding, inputs=gr.Image(type="pil"), outputs=gr.JSON())
text_embedding = gr.Interface(fn=get_text_embedding, inputs=gr.Textbox(), outputs=gr.JSON())
space = gr.TabbedInterface([image_embedding, text_embedding], ["Image Embedding", "Text Embedding"])
space.launch()