kateforsberg's picture
watchdog giveup code
f685ddc
raw
history blame
20.2 kB
from __future__ import annotations
import json
import logging
import os
import random
from abc import abstractmethod
from pathlib import Path
from typing import TYPE_CHECKING, cast
import requests
from dotenv import load_dotenv
from griptape.artifacts import ListArtifact, TextArtifact
from griptape.configs import Defaults
from griptape.configs.drivers import (
OpenAiDriversConfig,
)
from griptape.drivers import (
GriptapeCloudVectorStoreDriver,
LocalStructureRunDriver,
OpenAiChatPromptDriver,
)
from griptape.engines.rag import RagEngine
from griptape.engines.rag.modules import (
TextChunksResponseRagModule,
VectorStoreRetrievalRagModule,
)
from griptape.engines.rag.stages import ResponseRagStage, RetrievalRagStage
from griptape.events import (
BaseEvent,
EventBus,
EventListener,
FinishStructureRunEvent,
)
from griptape.memory.structure import ConversationMemory
from griptape.rules import Rule, Ruleset
from griptape.structures import Agent, Workflow
from griptape.tasks import CodeExecutionTask, StructureRunTask, ToolTask
from griptape.tools import RagTool
from statemachine import State, StateMachine
from statemachine.factory import StateMachineMetaclass
from griptape_statemachine.parsers.uw_config_parser import UWConfigParser
logger = logging.getLogger(__name__)
logging.getLogger("griptape").setLevel(logging.ERROR)
if TYPE_CHECKING:
from griptape.structures import Structure
from griptape.tools import BaseTool
from statemachine.event import Event
load_dotenv()
Defaults.drivers_config = OpenAiDriversConfig(
prompt_driver=OpenAiChatPromptDriver(model="gpt-4o", max_tokens=4096)
)
def custom_dict_merge(dict1: dict, dict2: dict) -> dict:
result = dict1.copy()
for key, value in dict2.items():
if key in result and isinstance(result[key], list) and isinstance(value, list):
result[key] = result[key] + value
else:
result[key] = value
return result
class UWBaseMachine(StateMachine):
"""Base class for a machine.
Attributes:
config_file (Path): The path to the configuration file.
config (dict): The configuration data.
outputs_to_user (list[str]): Outputs to return to the user.
"""
def __init__(self, config_file: Path, **kwargs) -> None:
self.config_parser = UWConfigParser(config_file)
self.config = self.config_parser.parse()
self._structures = {}
self.vector_stores = {} # Store here in case needs multiple uses
self.question_list: list = []
# For the parameters necessary from the user
self.page_range: tuple = ()
self.question_number: int = 0
self.taxonomy: list = []
self.give_up_count = 0
self.current_question_count = 0
self.state_status: dict[str, bool] = {}
for key in self.state_transitions:
self.state_status[key] = False
def on_event(event: BaseEvent) -> None:
"""Takes in griptape events from eventbus and fixes them."""
print(f"Received Griptape event: {json.dumps(event.to_dict(), indent=2)}")
try:
self.send(
"process_event",
event_={"type": "griptape_event", "value": event.to_dict()},
)
except Exception as e:
errormsg = f"Would not allow process_event to be sent. Check to see if it is defined in the config.yaml. Error:{e}"
raise ValueError(errormsg) from e
EventBus.clear_event_listeners()
EventBus.add_event_listener(
EventListener(on_event, event_types=[FinishStructureRunEvent]),
)
super().__init__()
@property
def available_events(self) -> list[str]:
return self.current_state.transitions.unique_events
@property
@abstractmethod
def tools(self) -> dict[str, BaseTool]:
"""Returns the Tools for the machine."""
...
@property
def _current_state_config(self) -> dict:
return self.config["states"][self.current_state_value]
@classmethod
def from_definition( # noqa: C901, PLR0912
cls, definition: dict, **extra_kwargs
) -> UWBaseMachine:
try:
states_instances = {}
for state_id, state_kwargs in definition["states"].items():
# These are the relevant states that need GOAP.
states_instances[state_id] = State(**state_kwargs, value=state_id)
except Exception as e:
errormsg = f"""Error in state definition: {e}.
"""
raise ValueError(errormsg) from e
events = {}
state_transitions = {}
for event_name, transitions in definition["events"].items():
for transition_data in transitions:
try:
source_name = transition_data["from"]
source = states_instances[source_name]
target = states_instances[transition_data["to"]]
relevance = ""
if "relevance" in transition_data:
relevance = transition_data["relevance"]
if source_name not in state_transitions:
state_transitions[source_name] = {event_name: relevance}
else:
state_transitions[source_name][event_name] = relevance
except Exception as e:
errormsg = f"Error:{e}. Please check your transitions to be sure each transition has a source and destination."
raise ValueError(errormsg) from e
transition = source.to(
target,
event=event_name,
cond=transition_data.get("cond"),
unless=transition_data.get("unless"),
on=transition_data.get("on"),
internal=transition_data.get("internal"),
)
if event_name in events:
events[event_name] |= transition
else:
events[event_name] = transition
for state_id, state in states_instances.items():
if state_id not in ("end", "start"):
transition = state.to(
state,
event="process_event",
on=f"on_event_{state_id}",
internal=True,
)
if "process_event" in events:
events["process_event"] |= transition
else:
events["process_event"] = transition
attrs_mapper = {
**extra_kwargs,
**states_instances,
**events,
"state_transitions": state_transitions,
}
return cast(
UWBaseMachine,
StateMachineMetaclass(cls.__name__, (cls,), attrs_mapper)(**extra_kwargs),
)
@classmethod
def from_config_file(
cls,
config_file: Path,
**extra_kwargs,
) -> UWBaseMachine:
"""Creates a StateMachine class from a configuration file"""
config_parser = UWConfigParser(config_file)
config = config_parser.parse()
extra_kwargs["config_file"] = config_file
definition_states = {
state_id: {
"initial": state_value.get("initial", False),
"final": state_value.get("final", False),
}
for state_id, state_value in config["states"].items()
}
definition_events = {
event_name: list(event_value["transitions"])
for event_name, event_value in config["events"].items()
}
definition = {"states": definition_states, "events": definition_events}
return cls.from_definition(definition, **extra_kwargs)
@abstractmethod
def start_machine(self) -> None:
"""Starts the machine."""
...
def reset_structures(self) -> None:
"""Resets the structures."""
self._structures = {}
def on_enter_state(self, source: State, state: State, event: Event) -> None:
print(f"Transitioning from {source} to {state} with event {event}")
def get_structure(self, structure_id: str) -> Structure:
global_structure_config = self.config["structures"][structure_id]
state_structure_config = self._current_state_config.get("structures", {}).get(
structure_id, {}
)
structure_config = custom_dict_merge(
global_structure_config, state_structure_config
)
if structure_id not in self._structures:
# Initialize Structure with all the expensive setup
structure = Agent(
id=structure_id,
conversation_memory=ConversationMemory(),
)
self._structures[structure_id] = structure
# Create a new clone with state-specific stuff
structure = self._structures[structure_id]
structure = Agent(
id=structure.id,
prompt_driver=structure.prompt_driver,
conversation_memory=structure.conversation_memory,
rulesets=[
*self._get_structure_rulesets(structure_config.get("ruleset_ids", [])),
],
)
print(f"Structure: {structure_id}")
for ruleset in structure.rulesets:
for rule in ruleset.rules:
print(f"Rule: {rule.value}")
return structure
def _get_structure_rulesets(self, ruleset_ids: list[str]) -> list[Ruleset]:
ruleset_configs = [
self.config["rulesets"][ruleset_id] for ruleset_id in ruleset_ids
]
# Convert ruleset configs to Rulesets
return [
Ruleset(
name=ruleset_config["name"],
rules=[Rule(rule) for rule in ruleset_config["rules"]],
)
for ruleset_config in ruleset_configs
]
def get_prompt_by_structure(self, structure_id: str) -> str | None:
try:
state_structure_config = self._current_state_config.get(
"structures", {}
).get(structure_id, {})
global_structure_config = self.config["structures"][structure_id]
except KeyError:
return None
prompt_id = None
if "prompt_id" in global_structure_config:
prompt_id = global_structure_config["prompt_id"]
elif "prompt_id" in state_structure_config:
prompt_id = state_structure_config["prompt_id"]
else:
return None
return self.config["prompts"][prompt_id]["prompt"]
def get_prompt_by_id(self, prompt_id: str) -> str | None:
prompt_config = self.config["prompts"]
if prompt_id in prompt_config:
return prompt_config[prompt_id]["prompt"]
return None
# ALL METHODS RELATING TO THE WORKFLOW AND PIPELINE
def end_workflow(self, task: CodeExecutionTask) -> ListArtifact:
parent_outputs = task.parent_outputs
questions = []
for outputs in parent_outputs.values():
if outputs.type == "InfoArtifact":
continue
questions.append(outputs)
return ListArtifact(questions)
def get_questions_workflow(self) -> Workflow:
workflow = Workflow(id="create_question_workflow")
# How many questions still need to be created
for _ in range(self.question_number - len(self.question_list)):
task = StructureRunTask(
structure_run_driver=LocalStructureRunDriver(
create_structure=self.get_single_question
),
child_ids=["end_task"],
)
workflow.add_task(task)
end_task = CodeExecutionTask(id="end_task", on_run=self.end_workflow)
workflow.add_task(end_task)
return workflow
def single_question_last_task(self, task: CodeExecutionTask) -> TextArtifact:
parent_outputs = task.parent_outputs
wrong_answers = parent_outputs["wrong_answers"].value # Output is a list
wrong_answers = wrong_answers.split("\n")
question_and_answer = parent_outputs["get_question"].value # Output is a json
try:
question_and_answer = json.loads(question_and_answer)
except:
question_and_answer = question_and_answer.split("\n")[1:]
question_and_answer = "".join(question_and_answer)
question_and_answer = json.loads(question_and_answer)
inputs = task.input.value.split(",")
question = {
"Question": question_and_answer["Question"],
"Answer": question_and_answer["Answer"],
"Wrong Answers": wrong_answers,
"Page": inputs[0],
"Taxonomy": inputs[1],
}
return TextArtifact(question)
def get_question_for_wrong_answers(self, task: CodeExecutionTask) -> TextArtifact:
parent_outputs = task.parent_outputs
question = parent_outputs["get_question"].value
question = json.loads(question)["Question"]
return TextArtifact(question)
def get_separated_answer_for_wrong_answers(
self, task: CodeExecutionTask
) -> TextArtifact:
parent_outputs = task.parent_outputs
answer = parent_outputs["get_question"].value
print(answer)
answer = json.loads(answer)["Answer"]
return TextArtifact(answer)
def make_rag_structure(
self, vector_store: GriptapeCloudVectorStoreDriver
) -> Structure:
if vector_store:
tool = self.build_rag_tool(self.build_rag_engine(vector_store))
use_rag_task = ToolTask(tool=tool)
return Agent(tasks=[use_rag_task])
errormsg = "No Vector Store"
raise ValueError(errormsg)
def get_single_question(self) -> Workflow:
question_generator = Workflow(id="single_question")
taxonomy = random.choice(self.taxonomy)
taxonomyprompt = {
"Knowledge": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The interrogative verb for the question should be randomly chosen from: 'define', 'list', 'state', 'identify','label'.",
"Comprehension": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The interrogative verb for the question should be randomly chosen from: 'explain', 'predict', 'interpret', 'infer', 'summarize', 'convert','give an example of x'.",
"Application": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The structure of the question should be randomly chosen from: 'How could x be used to y?', 'How would you show/make use of/modify/demonstrate/solve/apply x to conditions y?'",
}
pages, driver = self.get_vector_store_id_from_page()
get_information = StructureRunTask(
id="information_task",
input="What is the information in KB?",
structure_run_driver=LocalStructureRunDriver(
create_structure=lambda: self.make_rag_structure(driver)
),
child_ids=["get_question"],
)
# Get KBs and select it, assign it to the structure or create the structure right here.
# Rules for subject matter expert: return only a json with question and answer as keys.
generate_q_task = StructureRunTask(
id="get_question",
input=taxonomyprompt[taxonomy],
structure_run_driver=LocalStructureRunDriver(
create_structure=lambda: self.get_structure("subject_matter_expert")
),
parent_ids=["information_task"],
)
get_question_code_task = CodeExecutionTask(
id="get_only_question",
on_run=self.get_question_for_wrong_answers,
parent_ids=["get_question"],
child_ids=["wrong_answers"],
)
get_separated_answer_code_task = CodeExecutionTask(
id="get_separated_answer",
on_run=self.get_separated_answer_for_wrong_answers,
parent_ids=["get_question"],
child_ids=["wrong_answers"],
)
generate_wrong_answers = StructureRunTask(
id="wrong_answers",
input="""Write and return three incorrect answers for this question: {{parent_outputs['get_separated_question']}}. The correct answer to the question is: {{parent_outputs['get_separated_answer']}}, and incorrect answers should have similar sentence structure to the correct answer. Write the incorrect answers from this information: {{parent_outputs['information_task']}}""",
structure_run_driver=LocalStructureRunDriver(
create_structure=lambda: self.get_structure("wrong_answers_generator")
),
parent_ids=["get_only_question", "information_task"],
)
compile_task = CodeExecutionTask(
id="compile_task",
input=f"{pages}, {taxonomy}",
on_run=self.single_question_last_task,
parent_ids=["wrong_answers", "get_question"],
)
question_generator.add_tasks(
get_information,
generate_q_task,
get_question_code_task,
get_separated_answer_code_task,
generate_wrong_answers,
compile_task,
)
return question_generator
def get_vector_store_id_from_page(
self,
) -> tuple[str, GriptapeCloudVectorStoreDriver]:
base_url = "https://cloud.griptape.ai/api/"
kb_url = f"{base_url}/knowledge-bases"
headers = {"Authorization": f"Bearer {os.getenv('GT_CLOUD_API_KEY')}"}
# TODO: This needs to change when I have my own bucket. Right now, I'm doing the 10 most recently made KBs
response = requests.get(url=kb_url, headers=headers)
response.raise_for_status()
if response.status_code == 200:
data = response.json()
possible_kbs = {}
for kb in data["knowledge_bases"]:
name = kb["name"]
if "KB_section" not in name:
continue
page_nums = name.split("p")[1:]
start_page = int(page_nums[0].split("-")[0])
end_page = int(page_nums[1])
if end_page <= self.page_range[1] and start_page >= self.page_range[0]:
possible_kbs[kb["knowledge_base_id"]] = f"{start_page}-{end_page}"
kb_id = random.choice(list(possible_kbs.keys()))
page_value = possible_kbs[kb_id] # TODO: This won't help at all actually
return page_value, GriptapeCloudVectorStoreDriver(
api_key=os.getenv("GT_CLOUD_API_KEY", ""),
knowledge_base_id=kb_id,
)
else:
raise ValueError(response.status_code)
def get_taxonomy_vs(self) -> GriptapeCloudVectorStoreDriver:
return GriptapeCloudVectorStoreDriver(
api_key=os.getenv("GT_CLOUD_API_KEY", ""),
knowledge_base_id="2c3a6f19-51a8-43c3-8445-c7fbe06bf460",
)
def build_rag_engine(
self, vector_store_driver: GriptapeCloudVectorStoreDriver
) -> RagEngine:
return RagEngine(
retrieval_stage=RetrievalRagStage(
retrieval_modules=[
VectorStoreRetrievalRagModule(
vector_store_driver=vector_store_driver,
)
],
),
response_stage=ResponseRagStage(
response_modules=[TextChunksResponseRagModule()]
),
)
def build_rag_tool(self, engine: RagEngine) -> RagTool:
return RagTool(
description="Contains information about the textbook. Use it ONLY for context.",
rag_engine=engine,
)