File size: 8,414 Bytes
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# TODO: create a csv parser
from __future__ import annotations

from ast import Lambda
import contextlib
import csv
from pathlib import Path
from typing import TYPE_CHECKING, Callable

import yaml

if TYPE_CHECKING:
    from io import TextIOWrapper


class CsvParser:

    def __init__(self, directory: str) -> None:
        self.yaml_path = Path.joinpath(Path.cwd(), Path(f"{directory}/config.yaml"))
        self.csv_directory = Path.joinpath(Path.cwd(), Path(f"{directory}/csv_files"))
        csv_files = Path(self.csv_directory).glob("*")
        self.csv_file_paths = [file for file in csv_files if file.is_file()]

    def csv_parser(self) -> None:
        """This is going to take in a big csv, split it, and put it in config.yaml"""
        # This is going to parse multiple different csv files this time.
        split_csv = {}
        for csv_file in self.csv_file_paths:
            with Path.open(csv_file, "r", newline="") as csvfile:
                self.split_csv(csvfile, split_csv)
        # split_csv should have all the information
        yaml_data = yaml.safe_load(self.yaml_path.read_text())
        # Rulesets CHANGE
        try:
            yaml_data["rulesets"] = self.csv_rulesets(
                split_csv["Ruleset ID"]
            )  # Rulesets
        except KeyError:
            print("No rulesets")
        # Agents DONE
        try:
            yaml_data["structures"] = self.csv_agents(
                split_csv["Agent ID"]
            )  # Agent Definitions
        except KeyError:
            print("No structures")
        # States
        # Tailoring (affects the states section only) CHANGE
        if "State ID to Tailor" in split_csv:
            try:
                yaml_data["states"] = self.csv_states(
                    split_csv["State ID"],  # State Definitions
                    split_csv["State ID to Tailor"],  # Agent Tailoring State ID
                )
            except KeyError:
                print(" no states")
        else:
            try:
                yaml_data["states"] = self.csv_states(
                    split_csv["State ID"],  # State Definitions
                    [],  # Agent Tailoring State ID
                )
            except KeyError:
                print(" no states")
        try:
            yaml_data["prompts"] = self.csv_prompts(split_csv["Prompt ID"])
        except KeyError:
            print("no prompts")
        # # Transitioning (affects event section) DONE
        try:
            yaml_data["events"] = self.csv_transition_id(
                split_csv["Transition ID"]
            )  # State Transitions
        except KeyError:
            print("No transitions")
        # That's all folks!
        self.update_and_save(yaml_data)

    def split_csv(self, csv_file: TextIOWrapper, all_information: dict) -> None:
        """Takes in a csv_file, and splits it into a dictionary that is headed by each of the sections.
        Hooray!
        """
        reader = csv.reader(csv_file)
        # Get the header of the section
        header = next(reader)
        header = header[0]  # Go to the meat of it (get rid of descriptive header)
        current_information = []
        for row in reader:
            key = row[0]
            # If the row is empty and/or has no value in the first column.
            if key == ",,":
                continue
            current_information.append({key: row[1:]})
        all_information[header] = current_information

    def csv_kbs(self, kb_info: list) -> dict:
        dictionary = {}
        for row in kb_info:
            key, value = row.popitem()
            if key and value[0] and value[1]:
                dictionary[key] = {"file_path": value[0], "file_type": value[1]}
        return dictionary

    def csv_rulesets(self, ruleset_info: list) -> dict:
        dictionary = {}
        for row in ruleset_info:
            key, value = row.popitem()
            if key and value[0] and value[1]:
                rules = [
                    rule.strip().strip('"').lstrip("- ")
                    for rule in value[1].split("\n")
                    if rule.strip()
                ]
                dictionary[key] = {
                    "name": value[0],
                    "rules": rules,
                }  # Will have to check this.
        return dictionary

    def csv_prompts(self, prompt_info: list) -> dict:
        dictionary = {}
        for row in prompt_info:
            key, value = row.popitem()
            if key and value[0]:
                dictionary[key] = {"prompt": value[0]}
                if value[1]:
                    dictionary[key]["author_intent"] = value[1]
        return dictionary

    def csv_agents(self, agent_info: list) -> dict:
        dictionary = {}
        for row in agent_info:
            key, value = row.popitem()
            if key:
                ruleset_ids = []
                if value[0]:
                    ruleset_ids = [rule_id.strip() for rule_id in value[0].split(",")]
                config = {
                    "model": "gpt-4o",
                    "ruleset_ids": ruleset_ids,
                }
                # If there is a global KB used
                if value[1]:
                    config["vector_stores"] = [value[1]]
                # If there is a global prompt used (can be overrided by state specfic)
                if value[2]:
                    config["prompt_id"] = value[2]
                # If there is a model override
                if value[4]:
                    config["model"] = value[4]
                dictionary[key] = config
        return dictionary

    def csv_states(self, state_info: list, tailor_info: list) -> dict:
        states = {}
        for row in state_info:
            key, value = row.popitem()
            if not key:
                continue
            if key == "start":
                states[key] = {"initial": True}
            elif key == "end":
                states[key] = {"final": True}
            else:
                states[key] = {}
            if value[0] and value[0] != "none":
                agent_list = {name.strip(): {} for name in value[0].split(",")}
                states[key]["structures"] = agent_list
        for row in tailor_info:
            tailor, value = row.popitem()
            if not tailor:
                continue
            structures = (
                states[tailor]["structures"]
                if tailor in states and "structures" in states[tailor]
                else {}
            )
            structure = value
            structure_name = structure[0]
            # if ruleset
            try:
                structure_ruleset = structure[1]
                structure_ruleset_list = []
                for item in structure_ruleset.split(","):
                    if item.strip() != "":
                        structure_ruleset_list.append(item.strip())
                if len(structure_ruleset_list):
                    structures[structure_name] = {
                        "ruleset_ids": structure_ruleset_list,
                    }
            except KeyError:
                structures[structure_name] = {}
            try:
                if structure[2]:
                    structures[structure_name]["prompt_id"] = structure[2]
            except KeyError:
                pass
            states[tailor] = {"structures": structures}
        return states

    def csv_transition_id(self, transition_info: list) -> dict:
        events = {}
        for row in transition_info:
            key, value = row.popitem()
            if key and value[0] and value[1]:
                if key in events:
                    # Add the transition if there already are transitions
                    events[key]["transitions"].append(
                        {"from": value[0], "to": value[1]}
                    )
                else:
                    # create the first transition
                    events[key] = {
                        "transitions": [
                            {"from": value[0], "to": value[1]},
                        ]
                    }
        return events

    def update_and_save(self, config: dict) -> None:
        with self.yaml_path.open("w") as file:
            yaml.dump(config, file, default_flow_style=False, line_break="\n")


if __name__ == "__main__":
    CsvParser("uw_programmatic").csv_parser()