File size: 9,953 Bytes
d477d5c
 
 
 
 
 
 
d699829
 
 
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56aab6
 
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56aab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56aab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d477d5c
 
 
 
c56aab6
 
 
 
 
 
63e3e29
 
c56aab6
 
 
 
 
 
 
 
 
 
 
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56aab6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from __future__ import annotations

import ast
import csv
import json
from pathlib import Path
import random
from typing import TYPE_CHECKING

from uw_programmatic.base_machine import UWBaseMachine

if TYPE_CHECKING:
    from griptape.tools import BaseTool


class UWMachine(UWBaseMachine):
    """State machine with GOAP"""

    @property
    def tools(self) -> dict[str, BaseTool]:
        return {}

    def start_machine(self) -> None:
        """Starts the machine."""
        # Clear input history.
        # Clear csv file
        with Path(Path.cwd().joinpath("outputs/similarity_step.csv")).open("w") as file:
            file.write("")
        self.send("enter_first_state")

    def on_event_gather_parameters(self, event_: dict) -> None:
        event_source = event_["type"]
        event_value = event_["value"]
        match event_source:
            case "user_input":
                parameters = event_value
                self.page_range = parameters["page_range"]
                self.question_number = parameters["question_number"]
                self.taxonomy = parameters["taxonomy"]
                self.send("next_state")
            case _:
                err_msg = f"Unexpected Transition Event ID: {event_value}."
                raise ValueError(err_msg)

    def on_enter_evaluate_q_count(self) -> None:
        if len(self.question_list) >= self.question_number:
            self.send("finish_state")  # go to output questions
        else:
            self.send("next_state")  # go to need more questions

    def on_event_evaluate_q_count(self, event_: dict) -> None:
        pass

    def on_enter_need_more_q(self) -> None:
        # Create the entire workflow to create another question.
        self.get_questions_workflow().run()

    def on_event_need_more_q(self, event_: dict) -> None:
        event_source = event_["type"]
        event_value = event_["value"]
        match event_source:
            case "griptape_event":
                event_type = event_value["type"]
                match event_type:
                    case "FinishStructureRunEvent":
                        structure_id = event_value["structure_id"]
                        match structure_id:
                            case "create_question_workflow":
                                values = event_value["output_task_output"]["value"]
                                questions = [
                                    ast.literal_eval(question["value"])
                                    for question in values
                                ]
                                self.most_recent_questions = (
                                    questions  # This is a ListArtifact I'm pretty sure
                                )
                                self.send("next_state")
                    case _:
                        print(f"Error:{event_} ")
            case _:
                print(f"Unexpected: {event_}")

    def on_enter_assess_generated_q(self) -> None:
        # TODO: Should it append it to the list already and remove duplicates? or not?
        # TODO: Merge incoming lists
        with Path(Path.cwd().joinpath("outputs/similarity_step.csv")).open(
            "a", newline=""
        ) as file:
            writer = csv.DictWriter(
                file,
                fieldnames=[
                    "Question",
                    "Answer",
                    "Wrong Answers",
                    "Page",
                    "Taxonomy",
                ],
            )
            writer.writerow({"Question": "LIST OF QUESTIONS GENERATED THIS ROUND"})
            writer.writerows(self.most_recent_questions)
        merged_list = [*self.question_list, *self.most_recent_questions]
        prompt = f"{merged_list}"
        self.get_structure("similarity_auditor").run(prompt)

    def on_event_assess_generated_q(self, event_: dict) -> None:
        event_source = event_["type"]
        event_value = event_["value"]
        match event_source:
            case "griptape_event":
                event_type = event_value["type"]
                match event_type:
                    case "FinishStructureRunEvent":
                        structure_id = event_value["structure_id"]
                        match structure_id:
                            case "similarity_auditor":
                                new_question_list = event_value["output_task_output"][
                                    "value"
                                ]
                                try:
                                    new_question_list = json.loads(
                                        new_question_list
                                    )  # This must be in that JSON format
                                except:
                                    new_question_list = self.question_list
                                merged_list = [
                                    *self.question_list,
                                    *self.most_recent_questions,
                                ]
                                deleted_q = [
                                    question1
                                    for question1 in merged_list
                                    if not any(
                                        question2["Question"] == question1["Question"]
                                        for question2 in new_question_list
                                    )
                                ]
                                with Path(
                                    Path.cwd().joinpath("outputs/similarity_step.csv")
                                ).open("a", newline="") as file:
                                    writer = csv.DictWriter(
                                        file,
                                        fieldnames=[
                                            "Question",
                                            "Answer",
                                            "Wrong Answers",
                                            "Page",
                                            "Taxonomy",
                                        ],
                                    )
                                    writer.writerow(
                                        {"Question": "QUESTIONS REMOVED THIS ROUND!"}
                                    )
                                    if len(deleted_q):
                                        writer.writerows(deleted_q)
                                    else:
                                        writer.writerow({"Question": "No q removed"})
                                self.question_list = new_question_list
                                self.send("next_state")  # move on

    def on_enter_output_q(self) -> None:
        with Path(Path.cwd().joinpath("outputs/professor_guide.csv")).open(
            "w", newline=""
        ) as file:
            writer = csv.writer(file)
            for question in range(len(self.question_list)):
                # TODO: Shuffle answers according to row, keep correct answer in random section. Answer column is a number.
                new_row = ["MC", "", 1]
                new_row.append(self.question_list[question]["Question"])
                wrong_answers = list(self.question_list[question]["Wrong Answers"])
                column = random.randint(1, len(wrong_answers) + 1)
                new_row.append(column)
                for i in range(1, len(wrong_answers) + 2):
                    if i == column:
                        new_row.append(self.question_list[question]["Answer"])
                    else:
                        new_row.append(wrong_answers.pop())
                new_row.append(self.question_list[question]["Page"])
                new_row.append(self.question_list[question]["Taxonomy"])
                writer.writerow(new_row)
        self.send("next_state")

    def on_event_output_q(self, event_: dict) -> None:
        pass

    def on_exit_output_q(self) -> None:
        # Reset the state machine values
        self.question_list = []
        self.most_recent_questions = []

    if __name__ == "__main__":

        question_list = [
            {
                "Page": "1-2",
                "Taxonomy": "Knowledge",
                "Question": "What is Python?",
                "Answer": "A programming language",
                "Wrong Answers": ["A snake", "A car brand", "A fruit"],
            },
            {
                "Page": "3-4",
                "Taxonomy": "Comprehension",
                "Question": "What does HTML stand for?",
                "Answer": "HyperText Markup Language",
                "Wrong Answers": [
                    "High Text Machine Language",
                    "Hyperlink Text Mode Language",
                    "None of the above",
                ],
            },
        ]

        with Path(Path.cwd().joinpath("outputs/professor_guide.csv")).open(
            "w", newline=""
        ) as file:
            writer = csv.writer(file)
            for question in range(len(question_list)):
                # TODO: Shuffle answers according to row, keep correct answer in random section. Answer column is a number.
                new_row = [question_list[question]["Question"]]
                wrong_answers = list(question_list[question]["Wrong Answers"])
                column = random.randint(1, len(wrong_answers) + 1)
                new_row.append(column)
                for i in range(1, len(wrong_answers) + 2):
                    if i == column:
                        new_row.append(question_list[question]["Answer"])
                    else:
                        new_row.append(wrong_answers.pop())
                new_row.append(question_list[question]["Page"])
                new_row.append(question_list[question]["Taxonomy"])
                writer.writerow(new_row)