File size: 11,867 Bytes
d477d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
from __future__ import annotations
import ast
import json
import os
import random
import logging

import requests
from dotenv import load_dotenv
from griptape.artifacts import ListArtifact, TextArtifact
from griptape.configs import Defaults
from griptape.configs.drivers import OpenAiDriversConfig
from griptape.drivers import (
    LocalStructureRunDriver,
    OpenAiChatPromptDriver,
    GriptapeCloudVectorStoreDriver,
)
from griptape.artifacts import ListArtifact, TextArtifact
from griptape.rules import Ruleset, Rule

import json
import requests
import random
import os
from dotenv import load_dotenv

from griptape.engines.rag import RagEngine
from griptape.engines.rag.modules import (
    VectorStoreRetrievalRagModule,
    TextChunksResponseRagModule,
)
from griptape.engines.rag.stages import ResponseRagStage, RetrievalRagStage
from griptape.tools import RagTool
from griptape.configs.logging import TruncateLoggingFilter

from griptape_statemachine.parsers.uw_csv_parser import CsvParser

load_dotenv()

# openai default config pass in a new openai driver
Defaults.drivers_config = OpenAiDriversConfig(
    prompt_driver=OpenAiChatPromptDriver(model="gpt-4o", max_tokens=4096)
)
# logger = logging.getLogger(Defaults.logging_config.logger_name)
# logger.setLevel(logging.ERROR)
# logger.addFilter(TruncateLoggingFilter(max_log_length=5000))


# ALL METHODS RELATING TO THE WORKFLOW AND PIPELINE
def end_workflow(task: CodeExecutionTask) -> ListArtifact:
    parent_outputs = task.parent_outputs
    questions = []
    for output in parent_outputs.values():
        output = output.value
        try:
            output = ast.literal_eval(output)
            question = {output["Question"]: output}
            questions.append(TextArtifact(question))
        except SyntaxError:
            pass
    return ListArtifact(questions)


def get_questions_workflow() -> Workflow:
    workflow = Workflow(id="create_question_workflow")
    # How many questions still need to be created
    for _ in range(10):
        task = StructureRunTask(
            driver=LocalStructureRunDriver(create_structure=get_single_question),
            child_ids=["end_task"],
        )
        workflow.add_task(task)
    end_task = CodeExecutionTask(id="end_task", on_run=end_workflow)
    workflow.add_task(end_task)
    return workflow


def single_question_last_task(task: CodeExecutionTask) -> TextArtifact:
    parent_outputs = task.parent_outputs
    print(f"PARENT OUTPUTS ARE: {parent_outputs}")
    wrong_answers = parent_outputs["wrong_answers"].value  # Output is a list
    wrong_answers = wrong_answers.split("\n")
    question_and_answer = parent_outputs["get_question"].value  # Output is a json
    question_and_answer = json.loads(question_and_answer)
    inputs = task.input.value.split(",")
    question = {
        "Question": question_and_answer["Question"],
        "Answer": question_and_answer["Answer"],
        "Wrong Answers": wrong_answers,
        "Page": int(inputs[0]),
        "Taxonomy": inputs[1],
    }
    return TextArtifact(question)


def get_question_for_wrong_answers(task: CodeExecutionTask) -> TextArtifact:
    parent_outputs = task.parent_outputs
    question = parent_outputs["get_question"].value
    print(question)
    question = json.loads(question)["Question"]
    return TextArtifact(question)


def get_single_question() -> Workflow:
    question_generator = Workflow()
    page_number = random.choice(list(range(1, 9)))
    taxonomy = random.choice(["Knowledge", "Comprehension", "Application"])
    taxonomyprompt = {
        "Knowledge": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The interrogative verb for the question should be one of 'define', 'list', 'state', 'identify', or 'label'.",
        "Comprehension": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The interrogative verb for the question should be one of 'explain', 'predict', 'interpret', 'infer', 'summarize', 'convert', or 'give an example of x'.",
        "Application": "Generate a quiz question based ONLY on this information: {{parent_outputs['information_task']}}, then write the answer to the question. The structure of the question should be one of 'How could x be used to y?' or 'How would you show/make use of/modify/demonstrate/solve/apply x to conditions y?'",
    }
    # Get KBs and select it, assign it to the structure or create the structure right here.
    # Rules for subject matter expert: return only a json with question and answer as keys.
    generate_q_task = StructureRunTask(
        id="get_question",
        input=taxonomyprompt[taxonomy],
        driver=LocalStructureRunDriver(
            create_structure=lambda: get_structure("subject_matter_expert", page_number)
        ),
    )

    get_question_code_task = CodeExecutionTask(
        id="get_only_question",
        on_run=get_question_for_wrong_answers,
        parent_ids=["get_question"],
        child_ids=["wrong_answers"],
    )
    # This will use the same KB as the previous task
    generate_wrong_answers = StructureRunTask(
        id="wrong_answers",
        input="""Write and return three incorrect answers for this question: {{parent_outputs['get_only_question']}} with this context: {{parent_outputs['information_task']}}""",
        structure_run_driver=LocalStructureRunDriver(
            create_structure=lambda: get_structure("wrong_answers_generator")
        ),
        parent_ids=["get_only_question"],
    )
    compile_task = CodeExecutionTask(
        id="compile_task",
        input=f"{page_number}, {taxonomy})",
        on_run=single_question_last_task,
        parent_ids=["wrong_answers", "get_question"],
    )
    question_generator.add_tasks(
        generate_q_task,
        get_question_code_task,
        generate_wrong_answers,
        compile_task,
    )
    return question_generator


def get_structure(structure_id: str, page_number=0) -> Structure:
    match structure_id:
        case "subject_matter_expert":
            rulesets = Ruleset(
                name="specific_question_creator",
                rules=[
                    Rule(
                        "Return ONLY a json with 'Question' and 'Answer' as keys. No markdown, no commentary, no code, no backticks."
                    ),
                    Rule(
                        "Query to knowledge base should always be 'find information for quiz question'"
                    ),
                    Rule("Use ONLY information from your knowledge base"),
                    Rule(
                        "Question should be a question based on the knowledge base. Answer should be from knowledge base."
                    ),
                    Rule(
                        "The answer to the question should be short, but should not omit important information."
                    ),
                    Rule("Answer length should be 10 words maximum, 5 words minimum"),
                ],
            )
            structure = Agent(
                id="subject_matter_expert",
                prompt_driver=OpenAiChatPromptDriver(model="gpt-4o"),
                rulesets=[rulesets],
                tools=[tool],
            )
        case "taxonomy_expert":
            rulesets = Ruleset(
                name="KB Rules",
                rules=[
                    Rule(
                        "Use only your knowledge base. Do not make up any additional information."
                    ),
                    Rule("Maximum 10 words."),
                    Rule(
                        "Return information an AI chatbot could use to write a question on a subject."
                    ),
                ],
            )
            kb_driver = get_taxonomy_vs()
            tool = build_rag_tool(build_rag_engine(kb_driver))
            structure = Agent(
                id="taxonomy_expert",
                prompt_driver=OpenAiChatPromptDriver(model="gpt-4o"),
                tools=[tool],
            )
        case "wrong_answers_generator":
            rulesets = Ruleset(
                name="incorrect_answers_creator",
                rules=[
                    Rule(
                        "Return ONLY a list of 3 incorrect answers. No markdown, no commentary, no backticks."
                    ),
                    Rule(
                        "All incorrect answers should be different, but plausible answers to the question."
                    ),
                    Rule(
                        "Incorrect answers may reference material from the knowledge base, but must not be correct answers to the question"
                    ),
                    Rule(
                        "Length of incorrect answers should be 10 words max, 5 words minimum"
                    ),
                ],
            )
            kb_driver = get_vector_store_id_from_page(page_number)
            tool = build_rag_tool(build_rag_engine(kb_driver))
            structure = Agent(
                id="wrong_answers_generator",
                prompt_driver=OpenAiChatPromptDriver(model="gpt-4o"),
                rulesets=[rulesets],
                tools=[tool],
            )
        case _:
            structure = Agent(prompt_driver=OpenAiChatPromptDriver(model="gpt-4o"))
    return structure


def get_vector_store_id_from_page(page: int) -> GriptapeCloudVectorStoreDriver | None:
    base_url = "https://cloud.griptape.ai/api/"
    kb_url = f"{base_url}/knowledge-bases"
    headers = {"Authorization": f"Bearer {os.getenv('GT_CLOUD_API_KEY')}"}
    # TODO: This needs to change when I have my own bucket. Right now, I'm doing the 10 most recently made KBs
    response = requests.get(url=kb_url, headers=headers)
    response = requests.get(
        url=kb_url,
        headers=headers,
    )
    response.raise_for_status()
    if response.status_code == 200:
        data = response.json()
        for kb in data["knowledge_bases"]:
            name = kb["name"]
            if "KB_section" not in name:
                continue
            page_nums = name.split("pg")[1].split("-")
            start_page = int(page_nums[0])
            end_page = int(page_nums[1])
            if end_page <= 40 and start_page >= 1:
                possible_kbs[kb["knowledge_base_id"]] = f"{start_page}-{end_page}"
        kb_id = random.choice(list(possible_kbs.keys()))
        page_value = possible_kbs[kb_id]
        return page_value, GriptapeCloudVectorStoreDriver(
            api_key=os.getenv("GT_CLOUD_API_KEY", ""),
            knowledge_base_id=kb_id,
        )
    else:
        raise ValueError(response.status_code)
    return None


def get_taxonomy_vs() -> GriptapeCloudVectorStoreDriver:
    return GriptapeCloudVectorStoreDriver(
        api_key=os.getenv("GT_CLOUD_API_KEY", ""),
        knowledge_base_id="2c3a6f19-51a8-43c3-8445-c7fbe06bf460",
    )


def build_rag_engine(vector_store_driver) -> RagEngine:
    return RagEngine(
        retrieval_stage=RetrievalRagStage(
            retrieval_modules=[
                VectorStoreRetrievalRagModule(
                    vector_store_driver=vector_store_driver,
                    query_params={
                        "count": 100,
                    },
                )
            ],
        ),
        response_stage=ResponseRagStage(
            response_modules=[TextChunksResponseRagModule()]
        ),
    )


def build_rag_tool(engine) -> RagTool:
    return RagTool(
        description="Contains information about the textbook. Use it to answer any related questions.",
        rag_engine=engine,
    )


if __name__ == "__main__":
    # workflow = get_questions_workflow()
    # workflow.run()
    CsvParser("uw_programmatic").csv_parser()