Spaces:
Sleeping
Sleeping
File size: 6,164 Bytes
d4e00f6 2329051 d4e00f6 36d83b1 7d58ec4 2329051 36d83b1 d4e00f6 2329051 d4e00f6 36d83b1 2329051 7d58ec4 d4e00f6 67a06c2 7d58ec4 2329051 7d58ec4 2329051 7d58ec4 2329051 d4e00f6 2329051 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 318ef9e d4e00f6 2389189 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 d4e00f6 7d58ec4 67a06c2 7d58ec4 d4e00f6 7d58ec4 d4e00f6 67a06c2 2329051 7d58ec4 36d83b1 f787fa1 df7050b 7d58ec4 67a06c2 7d58ec4 2329051 7d58ec4 2329051 67a06c2 7d58ec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import glob
import gradio as gr
from typing import Any
from dotenv import load_dotenv
from griptape.structures import Agent
from griptape.tasks import PromptTask
from griptape.drivers import (
LocalConversationMemoryDriver,
GriptapeCloudStructureRunDriver,
LocalFileManagerDriver,
LocalStructureRunDriver,
)
from griptape.memory.structure import ConversationMemory
from griptape.tools import StructureRunClient, FileManager
from griptape.rules import Rule, Ruleset
from griptape.config import AnthropicStructureConfig
import time
import os
import re
# Load environment variables
load_dotenv()
# Create an agent that will create a prompt that can be used as input for the query agent from the Griptape Cloud.
# Function that logs user history - adds to history parameter of Gradio
# TODO: Figure out the exact use of this function
def user(user_message, history):
history.append([user_message, None])
return ("", history)
# Function that logs bot history - adds to the history parameter of Gradio
# TODO: Figure out the exact use of this function
def bot(history):
response = send_message(history[-1][0])
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.005)
yield history
def create_prompt_task(session_id: str, message: str) -> PromptTask:
return PromptTask(
f"""
Re-structure the values from the user's questions: '{message}' and the input value from the conversation memory '{session_id}.json' to fit the following format. Leave out attributes that aren't important to the user:
years experience: <x>
location: <x>
role: <x>
skills: <x>
expected salary: <x>
availability: <x>
past companies: <x>
past projects: <x>
show reel details: <x>
""",
)
def build_talk_agent(session_id: str, message: str) -> Agent:
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a specific format for a query."
),
Rule(
value="You ask the user follow-up questions to fill in missing information for the format you are trying to fit."
),
Rule(
value="If the user has no preference for a specific attribute, then you can remove it from the query."
),
Rule(
value="Only return the current query structure and any questions to fill in missing information."
),
Rule(
value="Don't return names or usernames, just return the initials of the responses."
),
],
)
file_manager_tool = FileManager(
name="FileManager",
file_manager_driver=LocalFileManagerDriver(),
off_prompt=False,
)
return Agent(
config=AnthropicStructureConfig(),
conversation_memory=ConversationMemory(
driver=LocalConversationMemoryDriver(file_path=f"{session_id}.json")
),
tools=[file_manager_tool],
tasks=[create_prompt_task(session_id, message)],
rulesets=[ruleset],
)
# Creates an agent for each run
# The agent uses local memory, which it differentiates between by session_hash.
def build_agent(session_id: str, message: str) -> Agent:
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a specific format for a query and then querying."
),
Rule(
value="Only return the result of the query, do not provide additional commentary."
),
Rule(value="Only perform one task at a time."),
Rule(
value="Do not perform the query unless the user has said 'Done' with formulating."
),
Rule(
value="Only perform the query with the proper query structure as one string argument."
),
Rule(
value="If you reformulate the query, then you must ask the user if they are 'Done' again."
),
Rule(
value="If the user says they want to start over, then you must delete the conversation memory file."
),
],
)
print("Base URL", os.environ.get("BASE_URL", "https://cloud.griptape.ai"))
query_client = StructureRunClient(
name="QueryResumeSearcher",
description="Use it to search for a candidate with the query.",
driver=GriptapeCloudStructureRunDriver(
# base_url=os.environ.get("BASE_URL","https://cloud.griptape.ai"),
structure_id=os.getenv("GT_STRUCTURE_ID"),
api_key=os.getenv("GT_CLOUD_API_KEY"),
structure_run_wait_time_interval=5,
structure_run_max_wait_time_attempts=30,
),
)
talk_client = StructureRunClient(
name="FormulateQueryFromUser",
description="Used to formulate a query from the user's input.",
driver=LocalStructureRunDriver(
structure_factory_fn=lambda: build_talk_agent(session_id, message),
),
)
return Agent(
config=AnthropicStructureConfig(),
conversation_memory=ConversationMemory(
driver=LocalConversationMemoryDriver(file_path=f"{session_id}.json")
),
tools=[talk_client, query_client],
rulesets=[ruleset],
)
def delete_json(session_id: str) -> None:
for file in glob.glob(f"{session_id}.json"):
os.remove(file)
def send_message(message: str, history, request: gr.Request) -> Any:
if request:
session_hash = request.session_hash
agent = build_agent(session_hash, message)
response = agent.run(message)
# if re.search(r'\bdone[.,!?]?\b', message, re.IGNORECASE):
# delete_json(session_hash)
return response.output.value
demo = gr.ChatInterface(fn=send_message)
demo.launch()
|