Spaces:
Sleeping
Sleeping
File size: 9,103 Bytes
d4e00f6 2adad16 2329051 d4e00f6 2adad16 77b60b2 7d58ec4 2adad16 7d58ec4 2329051 2adad16 d4e00f6 2adad16 2329051 d4e00f6 2adad16 36d83b1 2329051 7d58ec4 d4e00f6 67a06c2 2adad16 a6c9658 2adad16 60cb3bc eb0eca8 2adad16 67a06c2 7d58ec4 2329051 7d58ec4 2329051 7d58ec4 2329051 d4e00f6 2329051 d4e00f6 7d58ec4 d4e00f6 a6c9658 7d58ec4 d4e00f6 7d58ec4 2adad16 d4e00f6 7d58ec4 d4e00f6 a6c9658 d4e00f6 a6c9658 d4e00f6 7d58ec4 d4e00f6 a6c9658 2adad16 7d58ec4 d4e00f6 7d58ec4 77b60b2 d4e00f6 2adad16 d4e00f6 a6c9658 d4e00f6 7d58ec4 d4e00f6 65f8bda d4e00f6 77b60b2 2389189 7d58ec4 65f8bda 77b60b2 7d58ec4 d4e00f6 2adad16 d4e00f6 31abf01 7d58ec4 d4e00f6 a6c9658 7d58ec4 d4e00f6 77b60b2 d4e00f6 2adad16 d4e00f6 77b60b2 7d58ec4 d4e00f6 67a06c2 d4e00f6 a6c9658 2adad16 7d58ec4 d4e00f6 67a06c2 2329051 7d58ec4 02585f2 67a06c2 02585f2 2329051 77b60b2 177f0a1 77b60b2 177f0a1 77b60b2 60cb3bc 77b60b2 e43e145 2adad16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import glob
from venv import create
import gradio as gr
from typing import Any
from dotenv import load_dotenv
import requests
from griptape.structures import Agent, Structure, Workflow
from griptape.tasks import PromptTask, StructureRunTask
from griptape.drivers import (
LocalConversationMemoryDriver,
GriptapeCloudStructureRunDriver,
LocalFileManagerDriver,
LocalStructureRunDriver,
GriptapeCloudConversationMemoryDriver,
)
from griptape.memory.structure import ConversationMemory
from griptape.tools import StructureRunTool, FileManagerTool
from griptape.rules import Rule, Ruleset
from griptape.configs.drivers import AnthropicDriversConfig
from griptape.configs import Defaults
import time
import os
from urllib.parse import urljoin
# Load environment variables
load_dotenv()
Defaults.drivers_config = AnthropicDriversConfig()
base_url = "https://cloud.griptape.ai"
headers_api = {
"Authorization": f"Bearer {os.environ['GT_CLOUD_API_KEY']}",
"Content-Type": "application/json",
}
threads = {}
# custom_css = """
# #component-2 {
# height: 75vh !important;
# min-height: 600px !important;
# """
def create_thread_id(session_id: str) -> str:
if not session_id in threads:
params = {
"name": session_id,
"messages": [],
}
response = requests.post(
url=urljoin(base_url, "/api/threads"), headers=headers_api, json=params
)
response.raise_for_status()
thread_id = response.json()["thread_id"]
threads[session_id] = thread_id
return thread_id
else:
return threads[session_id]
# Create an agent that will create a prompt that can be used as input for the query agent from the Griptape Cloud.
# Function that logs user history - adds to history parameter of Gradio
# TODO: Figure out the exact use of this function
def user(user_message, history):
history.append([user_message, None])
return ("", history)
# Function that logs bot history - adds to the history parameter of Gradio
# TODO: Figure out the exact use of this function
def bot(history):
response = send_message(history[-1][0])
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(0.005)
yield history
def create_prompt_task(session_id: str, message: str) -> PromptTask:
return PromptTask(
f"""
Re-structure the values to form a query from the user's questions: '{message}' and the input value from the conversation memory. Leave out attributes that aren't important to the user:
""",
)
def build_talk_agent(session_id: str, message: str) -> Agent:
create_thread_id(session_id)
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a specific format for a query."
),
Rule(
value="""You ask the user follow-up questions to fill in missing information for:
years experience,
location,
role,
skills,
expected salary,
availability,
past companies,
past projects,
show reel details
"""
),
Rule(
value="Return the current query structure and any questions to fill in missing information."
),
],
)
return Agent(
conversation_memory=ConversationMemory(
conversation_memory_driver=GriptapeCloudConversationMemoryDriver(
thread_id=threads[session_id],
)
),
tasks=[create_prompt_task(session_id, message)],
rulesets=[ruleset],
)
# Creates an agent for each run
# The agent uses local memory, which it differentiates between by session_hash.
def build_agent(session_id: str, message: str, kbs: str) -> Agent:
create_thread_id(session_id)
ruleset = Ruleset(
name="Local Gradio Agent",
rules=[
Rule(
value="You are responsible for structuring a user's questions into a query and then querying."
),
Rule(
value="Only return the result of the query, do not provide additional commentary."
),
Rule(value="Only perform one task at a time."),
Rule(
value="Do not perform the query unless the user has confirmed they are done with formulating."
),
Rule(value="Only perform the query as one string argument."),
Rule(
value="If the user says they want to start over, then you must delete the conversation memory file."
),
Rule(
value="Do not ever search conversation memory for a formulated query instead of querying. Query every time."
),
],
)
query_client = StructureRunTool(
name="QueryResumeSearcher",
description=f"""Use it to search for a candidate with the query. Add each item in this list as separate arguments:{kbs}. Do not add any other arguments.""",
driver=GriptapeCloudStructureRunDriver(
structure_id=os.getenv("GT_STRUCTURE_ID"),
api_key=os.getenv("GT_CLOUD_API_KEY"),
structure_run_wait_time_interval=3,
structure_run_max_wait_time_attempts=30,
),
# structure_run_driver = LocalStructureRunDriver(
# create_structure=create_structure
# )
)
talk_client = StructureRunTool(
name="FormulateQueryFromUser",
description="Used to formulate a query from the user's input.",
structure_run_driver=LocalStructureRunDriver(
create_structure=lambda: build_talk_agent(session_id, message),
),
)
return Agent(
conversation_memory=ConversationMemory(
conversation_memory_driver=GriptapeCloudConversationMemoryDriver(
thread_id=threads[session_id],
)
),
tools=[talk_client, query_client],
rulesets=[ruleset],
)
def send_message(message: str, history, knowledge_bases, request: gr.Request) -> Any:
if request:
session_hash = request.session_hash
agent = build_agent(session_hash, message, str(knowledge_bases))
response = agent.run(message)
return response.output.value
def send_message_call(message: str, history, knowledge_bases) -> Any:
structure_id = os.getenv("GT_STRUCTURE_ID")
api_key = os.getenv("GT_CLOUD_API_KEY")
structure_url = f"https://cloud.griptape.ai/api/structures/{structure_id}/runs"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
payload = {"args": [message, *knowledge_bases]}
response = requests.post(structure_url, headers=headers, json=payload)
response.raise_for_status()
if response.status_code == 201:
data = response.json()
structure_run_id = data["structure_run_id"]
output = poll_structure(structure_run_id, headers)
output = output["output_task_output"]["value"]
output += f" \n UTC Timestamp: {data['created_at']}\n Structure ID: {structure_id} \n Run ID: {structure_run_id}"
return output
else:
data = response.json()
return (
f"Assistant Call Failed due to these errors: \n {','.join(data['errors'])} "
)
def poll_for_events(offset: int, structure_run_id: str, headers: dict):
url = f"https://cloud.griptape.ai/api/structure-runs/{structure_run_id}/events"
response = requests.get(
url=url, headers=headers, params={"offset": offset, "limit": 100}
)
response.raise_for_status()
return response
def poll_structure(structure_run_id: str, headers: dict):
response = poll_for_events(0, structure_run_id, headers)
events = response.json()["events"]
offset = response.json()["next_offset"]
not_finished = True
output = ""
while not_finished:
time.sleep(0.5)
for event in events:
if event["type"] == "FinishStructureRunEvent":
not_finished = False
output = dict(event["payload"])
break
response = response = poll_for_events(offset, structure_run_id, headers)
response.raise_for_status()
events = response.json()["events"]
offset = response.json()["next_offset"]
return output
with gr.Blocks() as demo:
knowledge_bases = gr.CheckboxGroup(
label="Select Knowledge Bases",
choices=["skills", "demographics", "linked_in", "showreels"],
)
chatbot = gr.ChatInterface(
fn=send_message_call,
chatbot=gr.Chatbot(height=300),
additional_inputs=knowledge_bases,
)
demo.launch(auth=(os.environ.get("GRADIO_USERNAME"), os.environ.get("GRADIO_PASSWORD")))
# demo.launch()
# Set it back to empty when a session is done
# Is there a better way?
threads = {}
|