Spaces:
Runtime error
Runtime error
gmerrill
commited on
Commit
·
759408c
1
Parent(s):
4c215e2
update
Browse files
main.py
CHANGED
|
@@ -5,38 +5,35 @@ import json
|
|
| 5 |
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
parsedBody = json.loads(body)
|
| 14 |
-
print(parsedBody['query'])
|
| 15 |
-
print(parsedBody['functions'])
|
| 16 |
-
return {
|
| 17 |
-
"val": body
|
| 18 |
-
}
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
TODO = '''
|
| 27 |
-
print('Device setup')
|
| 28 |
device : str = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 29 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 30 |
|
| 31 |
-
print('Model and tokenizer setup')
|
| 32 |
model_id : str = "gorilla-llm/gorilla-openfunctions-v1"
|
|
|
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True)
|
| 35 |
|
| 36 |
-
print('
|
| 37 |
model.to(device)
|
| 38 |
|
| 39 |
-
print('Pipeline setup')
|
| 40 |
pipe = pipeline(
|
| 41 |
"text-generation",
|
| 42 |
model=model,
|
|
@@ -46,5 +43,29 @@ pipe = pipeline(
|
|
| 46 |
torch_dtype=torch_dtype,
|
| 47 |
device=device,
|
| 48 |
)
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
| 5 |
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
+
def get_prompt(user_query: str, functions: list = []) -> str:
|
| 9 |
+
"""
|
| 10 |
+
Generates a conversation prompt based on the user's query and a list of functions.
|
| 11 |
|
| 12 |
+
Parameters:
|
| 13 |
+
- user_query (str): The user's query.
|
| 14 |
+
- functions (list): A list of functions to include in the prompt.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
Returns:
|
| 17 |
+
- str: The formatted conversation prompt.
|
| 18 |
+
"""
|
| 19 |
+
if len(functions) == 0:
|
| 20 |
+
return f"USER: <<question>> {user_query}\nASSISTANT: "
|
| 21 |
+
functions_string = json.dumps(functions)
|
| 22 |
+
return f"USER: <<question>> {user_query} <<function>> {functions_string}\nASSISTANT: "
|
| 23 |
|
|
|
|
|
|
|
| 24 |
device : str = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 25 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 26 |
|
|
|
|
| 27 |
model_id : str = "gorilla-llm/gorilla-openfunctions-v1"
|
| 28 |
+
print('AutoTokenizer.from_pretrained ...')
|
| 29 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 30 |
+
print('AutoModelForCausalLM.from_pretrained ...')
|
| 31 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True)
|
| 32 |
|
| 33 |
+
print('mode.to(device) ...')
|
| 34 |
model.to(device)
|
| 35 |
|
| 36 |
+
print('Pipeline setup ...')
|
| 37 |
pipe = pipeline(
|
| 38 |
"text-generation",
|
| 39 |
model=model,
|
|
|
|
| 43 |
torch_dtype=torch_dtype,
|
| 44 |
device=device,
|
| 45 |
)
|
| 46 |
+
|
| 47 |
+
print('FastAPI setup ...')
|
| 48 |
+
app = FastAPI()
|
| 49 |
+
|
| 50 |
+
@app.post("/query_gorilla")
|
| 51 |
+
async def query_gorilla(req: Request):
|
| 52 |
+
body = await req.body()
|
| 53 |
+
parsedBody = json.loads(body)
|
| 54 |
+
print(parsedBody['query'])
|
| 55 |
+
print(parsedBody['functions'])
|
| 56 |
+
|
| 57 |
+
print('Generate prompt and obtain model output')
|
| 58 |
+
prompt = get_prompt(query, functions=functions)
|
| 59 |
+
output = pipe(prompt)
|
| 60 |
+
|
| 61 |
+
return {
|
| 62 |
+
"val": output
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
app.mount("/", StaticFiles(directory="static", html=True), name="static")
|
| 66 |
+
|
| 67 |
+
@app.get("/")
|
| 68 |
+
def index() -> FileResponse:
|
| 69 |
+
return FileResponse(path="/app/static/index.html", media_type="text/html")
|
| 70 |
+
|
| 71 |
|