File size: 1,182 Bytes
f99e419
02b4c7b
 
 
 
 
 
 
0bc8a9d
fae36f8
7627f78
724e641
 
 
02b4c7b
 
 
 
 
d7cc957
0bc8a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse

from transformers import pipeline

app = FastAPI()

@app.post("/query_gorilla")
async def query_gorilla(req: Request):
    body = await req.body()
    return {
      "val": body
    }

app.mount("/", StaticFiles(directory="static", html=True), name="static")

@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")

TODO = '''
print('Device setup')
device : str = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

print('Model and tokenizer setup')
model_id : str = "gorilla-llm/gorilla-openfunctions-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True)

print('Move model to device')
model.to(device)

print('Pipeline setup')
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=128,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
)
'''