File size: 961 Bytes
5bcc73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import streamlit as st
from transformers import (
    PreTrainedTokenizerFast,
    VisionEncoderDecoderModel,
    ViTImageProcessor,
)

model_name = "grascii/gregg-vision-v0.2.1"


@st.cache_resource(show_spinner=f"Loading {model_name}")
def load_model():
    model = VisionEncoderDecoderModel.from_pretrained(
        model_name, token=st.secrets.HF_TOKEN
    )
    tokenizer = PreTrainedTokenizerFast.from_pretrained(
        model_name,
        token=st.secrets.HF_TOKEN,
    )
    processor = ViTImageProcessor.from_pretrained(model_name, token=st.secrets.HF_TOKEN)
    return model, tokenizer, processor


@st.cache_data(ttl=3600, show_spinner=f"Running {model_name}")
def run_vision(image):
    model, tokenizer, processor = load_model()
    pixel_values = processor(image, return_tensors="pt").pixel_values
    generated = model.generate(pixel_values, max_new_tokens=12)[0]
    return tokenizer.convert_ids_to_tokens(generated, skip_special_tokens=True)