Spaces:
Running
Running
File size: 1,278 Bytes
21d52e5 cebb5be cc28f23 cebb5be cc28f23 cebb5be cc28f23 e1b3e4a 370f129 81580d4 aa16083 be45354 8413b50 81fb889 8413b50 e1b3e4a 81580d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
---
title: README
emoji: 🏢
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---
The goal of this repository is to store the different graph datasets currently available as benchmarks, to provide them in an homogeneous and easily loadable way. For example, to load them in PyGeometric, you can do the following:
<br><br><small>
```python
from datasets import load_dataset
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
graphs_dataset = load_dataset("graphs-datasets/<dataset-name>")
graphs_list = [Data(graph) for graph in graphs_dataset["<train/valid/test>"]]
graphs_pygeometric = DataLoader(graph_list)
```
</small>
<br><br><br>
Currently available graphs are:
<br><br>
<strong> Open Graph Benchmark </strong>, graph classification task: <em> ogbg-molhiv, ogbg-molpcba, ogbg-ppa, ogbg-code2 </em> <br>
<strong> Molecular datasets </strong>, graph regression task: <em> ZINC </em>, graph classification task: <em> MUTAG, PROTEINS </em> <br>
<strong> MD17 molecular trajectory benchmark </strong>, graph regression task: <em> aspirin, benzene, ethanol, malonaldehyde, naphthalene, salycilic acid, toluene, uracil </em> <br>
<strong> Social datasets </strong>, graph classification task: <em> IMDb-B </em> <br>
- More to come! |