|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
groups=1, |
|
base_width=64, |
|
dilation=1, |
|
norm_layer=None, |
|
dcn=None): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError( |
|
'BasicBlock only supports groups=1 and base_width=64') |
|
if dilation > 1: |
|
raise NotImplementedError( |
|
"Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, |
|
inplanes, |
|
planes, |
|
stride=1, |
|
downsample=None, |
|
norm_layer=nn.BatchNorm2d, |
|
dcn=None): |
|
super(Bottleneck, self).__init__() |
|
self.dcn = dcn |
|
self.with_dcn = dcn is not None |
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) |
|
self.bn1 = norm_layer(planes, momentum=0.1) |
|
self.conv2 = nn.Conv2d(planes, |
|
planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=1, |
|
bias=False) |
|
|
|
self.bn2 = norm_layer(planes, momentum=0.1) |
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) |
|
self.bn3 = norm_layer(planes * 4, momentum=0.1) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = F.relu(self.bn1(self.conv1(x)), inplace=True) |
|
if not self.with_dcn: |
|
out = F.relu(self.bn2(self.conv2(out)), inplace=True) |
|
elif self.with_modulated_dcn: |
|
offset_mask = self.conv2_offset(out) |
|
offset = offset_mask[:, :18 * self.deformable_groups, :, :] |
|
mask = offset_mask[:, -9 * self.deformable_groups:, :, :] |
|
mask = mask.sigmoid() |
|
out = F.relu(self.bn2(self.conv2(out, offset, mask))) |
|
else: |
|
offset = self.conv2_offset(out) |
|
out = F.relu(self.bn2(self.conv2(out, offset)), inplace=True) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = F.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
""" ResNet """ |
|
|
|
def __init__(self, |
|
architecture, |
|
norm_layer=nn.BatchNorm2d, |
|
dcn=None, |
|
stage_with_dcn=(False, False, False, False)): |
|
super(ResNet, self).__init__() |
|
self._norm_layer = norm_layer |
|
assert architecture in [ |
|
"resnet18", "resnet34", "resnet50", "resnet101", 'resnet152' |
|
] |
|
layers = { |
|
'resnet18': [2, 2, 2, 2], |
|
'resnet34': [3, 4, 6, 3], |
|
'resnet50': [3, 4, 6, 3], |
|
'resnet101': [3, 4, 23, 3], |
|
'resnet152': [3, 8, 36, 3], |
|
} |
|
self.inplanes = 64 |
|
if architecture == "resnet18" or architecture == 'resnet34': |
|
self.block = BasicBlock |
|
else: |
|
self.block = Bottleneck |
|
self.layers = layers[architecture] |
|
|
|
self.conv1 = nn.Conv2d(3, |
|
64, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3, |
|
bias=False) |
|
self.bn1 = norm_layer(64, eps=1e-5, momentum=0.1, affine=True) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
|
|
stage_dcn = [dcn if with_dcn else None for with_dcn in stage_with_dcn] |
|
|
|
self.layer1 = self.make_layer(self.block, |
|
64, |
|
self.layers[0], |
|
dcn=stage_dcn[0]) |
|
self.layer2 = self.make_layer(self.block, |
|
128, |
|
self.layers[1], |
|
stride=2, |
|
dcn=stage_dcn[1]) |
|
self.layer3 = self.make_layer(self.block, |
|
256, |
|
self.layers[2], |
|
stride=2, |
|
dcn=stage_dcn[2]) |
|
|
|
self.layer4 = self.make_layer(self.block, |
|
512, |
|
self.layers[3], |
|
stride=2, |
|
dcn=stage_dcn[3]) |
|
|
|
def forward(self, x): |
|
x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
return x |
|
|
|
def stages(self): |
|
return [self.layer1, self.layer2, self.layer3, self.layer4] |
|
|
|
def make_layer(self, block, planes, blocks, stride=1, dcn=None): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
nn.Conv2d(self.inplanes, |
|
planes * block.expansion, |
|
kernel_size=1, |
|
stride=stride, |
|
bias=False), |
|
self._norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
stride, |
|
downsample, |
|
norm_layer=self._norm_layer, |
|
dcn=dcn)) |
|
self.inplanes = planes * block.expansion |
|
for i in range(1, blocks): |
|
layers.append( |
|
block(self.inplanes, |
|
planes, |
|
norm_layer=self._norm_layer, |
|
dcn=dcn)) |
|
|
|
return nn.Sequential(*layers) |
|
|