Spaces:
Running
Running
Upload with huggingface_hub
Browse files
README.md
CHANGED
@@ -6,7 +6,6 @@ colorFrom: indigo
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
-
|
10 |
-
app_file: app.py
|
11 |
pinned: false
|
12 |
---
|
|
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 3.4.1
|
9 |
+
app_file: run.py
|
|
|
10 |
pinned: false
|
11 |
---
|
run.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
current_dir = os.path.dirname(os.path.realpath(__file__))
|
10 |
+
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv"))
|
11 |
+
|
12 |
+
|
13 |
+
def encode_age(df):
|
14 |
+
df.Age = df.Age.fillna(-0.5)
|
15 |
+
bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
|
16 |
+
categories = pd.cut(df.Age, bins, labels=False)
|
17 |
+
df.Age = categories
|
18 |
+
return df
|
19 |
+
|
20 |
+
|
21 |
+
def encode_fare(df):
|
22 |
+
df.Fare = df.Fare.fillna(-0.5)
|
23 |
+
bins = (-1, 0, 8, 15, 31, 1000)
|
24 |
+
categories = pd.cut(df.Fare, bins, labels=False)
|
25 |
+
df.Fare = categories
|
26 |
+
return df
|
27 |
+
|
28 |
+
|
29 |
+
def encode_df(df):
|
30 |
+
df = encode_age(df)
|
31 |
+
df = encode_fare(df)
|
32 |
+
sex_mapping = {"male": 0, "female": 1}
|
33 |
+
df = df.replace({"Sex": sex_mapping})
|
34 |
+
embark_mapping = {"S": 1, "C": 2, "Q": 3}
|
35 |
+
df = df.replace({"Embarked": embark_mapping})
|
36 |
+
df.Embarked = df.Embarked.fillna(0)
|
37 |
+
df["Company"] = 0
|
38 |
+
df.loc[(df["SibSp"] > 0), "Company"] = 1
|
39 |
+
df.loc[(df["Parch"] > 0), "Company"] = 2
|
40 |
+
df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3
|
41 |
+
df = df[
|
42 |
+
[
|
43 |
+
"PassengerId",
|
44 |
+
"Pclass",
|
45 |
+
"Sex",
|
46 |
+
"Age",
|
47 |
+
"Fare",
|
48 |
+
"Embarked",
|
49 |
+
"Company",
|
50 |
+
"Survived",
|
51 |
+
]
|
52 |
+
]
|
53 |
+
return df
|
54 |
+
|
55 |
+
|
56 |
+
train = encode_df(data)
|
57 |
+
|
58 |
+
X_all = train.drop(["Survived", "PassengerId"], axis=1)
|
59 |
+
y_all = train["Survived"]
|
60 |
+
|
61 |
+
num_test = 0.20
|
62 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
63 |
+
X_all, y_all, test_size=num_test, random_state=23
|
64 |
+
)
|
65 |
+
|
66 |
+
clf = RandomForestClassifier()
|
67 |
+
clf.fit(X_train, y_train)
|
68 |
+
predictions = clf.predict(X_test)
|
69 |
+
|
70 |
+
|
71 |
+
def predict_survival(passenger_class, is_male, age, company, fare, embark_point):
|
72 |
+
if passenger_class is None or embark_point is None:
|
73 |
+
return None
|
74 |
+
df = pd.DataFrame.from_dict(
|
75 |
+
{
|
76 |
+
"Pclass": [passenger_class + 1],
|
77 |
+
"Sex": [0 if is_male else 1],
|
78 |
+
"Age": [age],
|
79 |
+
"Company": [
|
80 |
+
(1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
|
81 |
+
],
|
82 |
+
"Fare": [fare],
|
83 |
+
"Embarked": [embark_point + 1],
|
84 |
+
}
|
85 |
+
)
|
86 |
+
df = encode_age(df)
|
87 |
+
df = encode_fare(df)
|
88 |
+
pred = clf.predict_proba(df)[0]
|
89 |
+
return {"Perishes": float(pred[0]), "Survives": float(pred[1])}
|
90 |
+
|
91 |
+
|
92 |
+
demo = gr.Interface(
|
93 |
+
predict_survival,
|
94 |
+
[
|
95 |
+
gr.Dropdown(["first", "second", "third"], type="index"),
|
96 |
+
"checkbox",
|
97 |
+
gr.Slider(0, 80, value=25),
|
98 |
+
gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"),
|
99 |
+
gr.Number(value=20),
|
100 |
+
gr.Radio(["S", "C", "Q"], type="index"),
|
101 |
+
],
|
102 |
+
"label",
|
103 |
+
examples=[
|
104 |
+
["first", True, 30, [], 50, "S"],
|
105 |
+
["second", False, 40, ["Sibling", "Child"], 10, "Q"],
|
106 |
+
["third", True, 30, ["Child"], 20, "S"],
|
107 |
+
],
|
108 |
+
interpretation="default",
|
109 |
+
live=True,
|
110 |
+
)
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
demo.launch()
|