Spaces:
Running
Running
| import pandas as pd | |
| from sklearn.ensemble import RandomForestClassifier # type: ignore | |
| from sklearn.model_selection import train_test_split # type: ignore | |
| import gradio as gr | |
| # get_file() returns the file path to sample data files included with Gradio | |
| from gradio.media import get_file | |
| data = pd.read_csv(get_file("titanic.csv")) | |
| def encode_age(df): | |
| df.Age = df.Age.fillna(-0.5) | |
| bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120) | |
| categories = pd.cut(df.Age, bins, labels=False) | |
| df.Age = categories | |
| return df | |
| def encode_fare(df): | |
| df.Fare = df.Fare.fillna(-0.5) | |
| bins = (-1, 0, 8, 15, 31, 1000) | |
| categories = pd.cut(df.Fare, bins, labels=False) | |
| df.Fare = categories | |
| return df | |
| def encode_df(df): | |
| df = encode_age(df) | |
| df = encode_fare(df) | |
| sex_mapping = {"male": 0, "female": 1} | |
| df = df.replace({"Sex": sex_mapping}) | |
| embark_mapping = {"S": 1, "C": 2, "Q": 3} | |
| df = df.replace({"Embarked": embark_mapping}) | |
| df.Embarked = df.Embarked.fillna(0) | |
| df["Company"] = 0 | |
| df.loc[(df["SibSp"] > 0), "Company"] = 1 | |
| df.loc[(df["Parch"] > 0), "Company"] = 2 | |
| df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3 | |
| df = df[ | |
| [ | |
| "PassengerId", | |
| "Pclass", | |
| "Sex", | |
| "Age", | |
| "Fare", | |
| "Embarked", | |
| "Company", | |
| "Survived", | |
| ] | |
| ] | |
| return df | |
| train = encode_df(data) | |
| X_all = train.drop(["Survived", "PassengerId"], axis=1) | |
| y_all = train["Survived"] | |
| num_test = 0.20 | |
| X_train, X_test, y_train, y_test = train_test_split( | |
| X_all, y_all, test_size=num_test, random_state=23 | |
| ) | |
| clf = RandomForestClassifier() | |
| clf.fit(X_train, y_train) | |
| predictions = clf.predict(X_test) | |
| def predict_survival(passenger_class, is_male, age, company, fare, embark_point): | |
| if passenger_class is None or embark_point is None: | |
| return None | |
| df = pd.DataFrame.from_dict( | |
| { | |
| "Pclass": [passenger_class + 1], | |
| "Sex": [0 if is_male else 1], | |
| "Age": [age], | |
| "Fare": [fare], | |
| "Embarked": [embark_point + 1], | |
| "Company": [ | |
| (1 if "Sibling" in company else 0) + (2 if "Child" in company else 0) | |
| ] | |
| } | |
| ) | |
| df = encode_age(df) | |
| df = encode_fare(df) | |
| pred = clf.predict_proba(df)[0] | |
| return {"Perishes": float(pred[0]), "Survives": float(pred[1])} | |
| demo = gr.Interface( | |
| predict_survival, | |
| [ | |
| gr.Dropdown(["first", "second", "third"], type="index"), | |
| "checkbox", | |
| gr.Slider(0, 80, value=25), | |
| gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"), | |
| gr.Number(value=20), | |
| gr.Radio(["S", "C", "Q"], type="index"), | |
| ], | |
| "label", | |
| examples=[ | |
| ["first", True, 30, [], 50, "S"], | |
| ["second", False, 40, ["Sibling", "Child"], 10, "Q"], | |
| ["third", True, 30, ["Child"], 20, "S"], | |
| ], | |
| live=True, | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |