Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,7 @@ emoji: 🔥
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
-
sdk_version: 3.
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
|
|
5 |
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
+
sdk_version: 3.41.2
|
9 |
app_file: run.py
|
10 |
pinned: false
|
11 |
hf_oauth: true
|
requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
https://gradio-main-build.s3.amazonaws.com/
|
2 |
vega_datasets
|
|
|
1 |
+
https://gradio-main-build.s3.amazonaws.com/d76d50112328711b1a692b80c1e88a085b15b301/gradio-3.41.2-py3-none-any.whl
|
2 |
vega_datasets
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: scatterplot_component"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "\n", "with gr.Blocks() as demo:\n", " gr.ScatterPlot(
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": 302934307671667531413257853548643485645, "metadata": {}, "source": ["# Gradio Demo: scatterplot_component"]}, {"cell_type": "code", "execution_count": null, "id": 272996653310673477252411125948039410165, "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": 288918539441861185822528903084949547379, "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from vega_datasets import data\n", "\n", "cars = data.cars()\n", "\n", "with gr.Blocks() as demo:\n", " gr.ScatterPlot(\n", " value=cars,\n", " x=\"Horsepower\",\n", " y=\"Miles_per_Gallon\",\n", " color=\"Origin\",\n", " tooltip=\"Name\",\n", " title=\"Car Data\",\n", " y_title=\"Miles per Gallon\",\n", " color_legend_title=\"Origin of Car\",\n", " container=False,\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -4,15 +4,17 @@ from vega_datasets import data
|
|
4 |
cars = data.cars()
|
5 |
|
6 |
with gr.Blocks() as demo:
|
7 |
-
gr.ScatterPlot(
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
if __name__ == "__main__":
|
18 |
-
demo.launch()
|
|
|
4 |
cars = data.cars()
|
5 |
|
6 |
with gr.Blocks() as demo:
|
7 |
+
gr.ScatterPlot(
|
8 |
+
value=cars,
|
9 |
+
x="Horsepower",
|
10 |
+
y="Miles_per_Gallon",
|
11 |
+
color="Origin",
|
12 |
+
tooltip="Name",
|
13 |
+
title="Car Data",
|
14 |
+
y_title="Miles per Gallon",
|
15 |
+
color_legend_title="Origin of Car",
|
16 |
+
container=False,
|
17 |
+
)
|
18 |
|
19 |
if __name__ == "__main__":
|
20 |
+
demo.launch()
|