Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.11.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
|
2 |
---
|
3 |
+
title: chatbot_thoughts
|
4 |
+
emoji: 🔥
|
5 |
+
colorFrom: indigo
|
6 |
colorTo: indigo
|
7 |
sdk: gradio
|
8 |
sdk_version: 5.11.0
|
9 |
+
app_file: run.py
|
10 |
pinned: false
|
11 |
+
hf_oauth: true
|
12 |
---
|
|
|
|
run.ipynb
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: chatbot_thoughts"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "from gradio import ChatMessage\n", "import time\n", "\n", "def simulate_thinking_chat(message: str, history: list):\n", " \"\"\"Mimicking thinking process and response\"\"\"\n", " # Add initial empty thinking message to chat history\n", "\n", " history.append( # Adds new message to the chat history list\n", " ChatMessage( # Creates a new chat message\n", " role=\"assistant\", # Specifies this is from the assistant\n", " content=\"\", # Initially empty content\n", " metadata={\"title\": \"Thinking... \"} # Setting a thinking header here\n", " )\n", " )\n", " time.sleep(0.5)\n", " yield history # Returns current state of chat history\n", " \n", " # Define the thoughts that LLM will \"think\" through\n", " thoughts = [\n", " \"First, I need to understand the core aspects of the query...\",\n", " \"Now, considering the broader context and implications...\",\n", " \"Analyzing potential approaches to formulate a comprehensive answer...\",\n", " \"Finally, structuring the response for clarity and completeness...\"\n", " ]\n", " \n", " # Variable to store all thoughts as they accumulate\n", " accumulated_thoughts = \"\"\n", " \n", " # Loop through each thought\n", " for thought in thoughts:\n", " time.sleep(0.5) # Add a samll delay for realism\n", " \n", " # Add new thought to accumulated thoughts with markdown bullet point\n", " accumulated_thoughts += f\"- {thought}\\n\\n\" # \\n\\n creates line breaks\n", " \n", " # Update the thinking message with all thoughts so far\n", " history[-1] = ChatMessage( # Updates last message in history\n", " role=\"assistant\",\n", " content=accumulated_thoughts.strip(), # Remove extra whitespace\n", " metadata={\"title\": \"Thinking...\"} # Shows thinking header\n", " )\n", " yield history # Returns updated chat history\n", " \n", " # After thinking is complete, adding the final response\n", " history.append(\n", " ChatMessage(\n", " role=\"assistant\",\n", " content=\"Based on my thoughts and analysis above, my response is: This dummy repro shows how thoughts of a thinking LLM can be progressively shown before providing its final answer.\"\n", " )\n", " )\n", " yield history # Returns final state of chat history\n", "\n", "# Gradio blocks with gr.chatbot\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"# Thinking LLM Demo \ud83e\udd14\")\n", " chatbot = gr.Chatbot(type=\"messages\", render_markdown=True)\n", " msg = gr.Textbox(placeholder=\"Type your message...\")\n", " \n", " msg.submit(\n", " lambda m, h: (m, h + [ChatMessage(role=\"user\", content=m)]),\n", " [msg, chatbot],\n", " [msg, chatbot]\n", " ).then(\n", " simulate_thinking_chat,\n", " [msg, chatbot],\n", " chatbot\n", " )\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio import ChatMessage
|
3 |
+
import time
|
4 |
+
|
5 |
+
def simulate_thinking_chat(message: str, history: list):
|
6 |
+
"""Mimicking thinking process and response"""
|
7 |
+
# Add initial empty thinking message to chat history
|
8 |
+
|
9 |
+
history.append( # Adds new message to the chat history list
|
10 |
+
ChatMessage( # Creates a new chat message
|
11 |
+
role="assistant", # Specifies this is from the assistant
|
12 |
+
content="", # Initially empty content
|
13 |
+
metadata={"title": "Thinking... "} # Setting a thinking header here
|
14 |
+
)
|
15 |
+
)
|
16 |
+
time.sleep(0.5)
|
17 |
+
yield history # Returns current state of chat history
|
18 |
+
|
19 |
+
# Define the thoughts that LLM will "think" through
|
20 |
+
thoughts = [
|
21 |
+
"First, I need to understand the core aspects of the query...",
|
22 |
+
"Now, considering the broader context and implications...",
|
23 |
+
"Analyzing potential approaches to formulate a comprehensive answer...",
|
24 |
+
"Finally, structuring the response for clarity and completeness..."
|
25 |
+
]
|
26 |
+
|
27 |
+
# Variable to store all thoughts as they accumulate
|
28 |
+
accumulated_thoughts = ""
|
29 |
+
|
30 |
+
# Loop through each thought
|
31 |
+
for thought in thoughts:
|
32 |
+
time.sleep(0.5) # Add a samll delay for realism
|
33 |
+
|
34 |
+
# Add new thought to accumulated thoughts with markdown bullet point
|
35 |
+
accumulated_thoughts += f"- {thought}\n\n" # \n\n creates line breaks
|
36 |
+
|
37 |
+
# Update the thinking message with all thoughts so far
|
38 |
+
history[-1] = ChatMessage( # Updates last message in history
|
39 |
+
role="assistant",
|
40 |
+
content=accumulated_thoughts.strip(), # Remove extra whitespace
|
41 |
+
metadata={"title": "Thinking..."} # Shows thinking header
|
42 |
+
)
|
43 |
+
yield history # Returns updated chat history
|
44 |
+
|
45 |
+
# After thinking is complete, adding the final response
|
46 |
+
history.append(
|
47 |
+
ChatMessage(
|
48 |
+
role="assistant",
|
49 |
+
content="Based on my thoughts and analysis above, my response is: This dummy repro shows how thoughts of a thinking LLM can be progressively shown before providing its final answer."
|
50 |
+
)
|
51 |
+
)
|
52 |
+
yield history # Returns final state of chat history
|
53 |
+
|
54 |
+
# Gradio blocks with gr.chatbot
|
55 |
+
with gr.Blocks() as demo:
|
56 |
+
gr.Markdown("# Thinking LLM Demo 🤔")
|
57 |
+
chatbot = gr.Chatbot(type="messages", render_markdown=True)
|
58 |
+
msg = gr.Textbox(placeholder="Type your message...")
|
59 |
+
|
60 |
+
msg.submit(
|
61 |
+
lambda m, h: (m, h + [ChatMessage(role="user", content=m)]),
|
62 |
+
[msg, chatbot],
|
63 |
+
[msg, chatbot]
|
64 |
+
).then(
|
65 |
+
simulate_thinking_chat,
|
66 |
+
[msg, chatbot],
|
67 |
+
chatbot
|
68 |
+
)
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
demo.launch()
|