import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread import spaces tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", device_map="auto") terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] @spaces.GPU(duration=120) def chat_mistral7b_v0dot3(message: str, history: list, temperature: float, max_new_tokens: int ) -> str: conversation = [] for user, assistant in history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids= input_ids, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, eos_token_id=terminators, ) # This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. if temperature == 0: generate_kwargs['do_sample'] = False t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) #print(outputs) yield "".join(outputs) chatbot = gr.Chatbot(height=400) # Gradio block with gr.Blocks() as demo: gr.Markdown("# ChatInterface with Mistral and Transformers 🤗") gr.ChatInterface( fn=chat_mistral7b_v0dot3, fill_height=True, chatbot=chatbot, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.95, label="Temperature", render=False), gr.Slider(minimum=128, maximum=4096, step=1, value=512, label="Max new tokens", render=False ), ], ) if __name__ == "__main__": demo.launch()