Upload folder using huggingface_hub
Browse files- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +2 -2
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
2 |
-
https://gradio-builds.s3.amazonaws.com/
|
3 |
torch
|
4 |
transformers
|
|
|
1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@76c175935019833baef709a5cf401d2263ca72ee#subdirectory=client/python
|
2 |
+
https://gradio-builds.s3.amazonaws.com/76c175935019833baef709a5cf401d2263ca72ee/gradio-4.38.1-py3-none-any.whl
|
3 |
torch
|
4 |
transformers
|
run.ipynb
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_speech_text_sentiment"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from transformers import pipeline\n", "\n", "import gradio as gr\n", "\n", "asr = pipeline(\"automatic-speech-recognition\", \"facebook/wav2vec2-base-960h\")\n", "classifier = pipeline(\"text-classification\")\n", "\n", "\n", "def speech_to_text(speech):\n", " text = asr(speech)[\"text\"]\n", " return text\n", "\n", "\n", "def text_to_sentiment(text):\n", " return classifier(text)[0][\"label\"]\n", "\n", "\n", "demo = gr.Blocks()\n", "\n", "with demo:\n", " audio_file = gr.Audio(type=\"filepath\")\n", " text = gr.Textbox()\n", " label = gr.Label()\n", "\n", " b1 = gr.Button(\"Recognize Speech\")\n", " b2 = gr.Button(\"Classify Sentiment\")\n", "\n", " b1.click(speech_to_text, inputs=audio_file, outputs=text)\n", " b2.click(text_to_sentiment, inputs=text, outputs=label)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
|
|
1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: blocks_speech_text_sentiment"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio torch transformers"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["from transformers import pipeline\n", "\n", "import gradio as gr\n", "\n", "asr = pipeline(\"automatic-speech-recognition\", \"facebook/wav2vec2-base-960h\")\n", "classifier = pipeline(\"text-classification\")\n", "\n", "\n", "def speech_to_text(speech):\n", " text = asr(speech)[\"text\"] # type: ignore\n", " return text\n", "\n", "\n", "def text_to_sentiment(text):\n", " return classifier(text)[0][\"label\"] # type: ignore\n", "\n", "\n", "demo = gr.Blocks()\n", "\n", "with demo:\n", " audio_file = gr.Audio(type=\"filepath\")\n", " text = gr.Textbox()\n", " label = gr.Label()\n", "\n", " b1 = gr.Button(\"Recognize Speech\")\n", " b2 = gr.Button(\"Classify Sentiment\")\n", "\n", " b1.click(speech_to_text, inputs=audio_file, outputs=text)\n", " b2.click(text_to_sentiment, inputs=text, outputs=label)\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
@@ -7,12 +7,12 @@ classifier = pipeline("text-classification")
|
|
7 |
|
8 |
|
9 |
def speech_to_text(speech):
|
10 |
-
text = asr(speech)["text"]
|
11 |
return text
|
12 |
|
13 |
|
14 |
def text_to_sentiment(text):
|
15 |
-
return classifier(text)[0]["label"]
|
16 |
|
17 |
|
18 |
demo = gr.Blocks()
|
|
|
7 |
|
8 |
|
9 |
def speech_to_text(speech):
|
10 |
+
text = asr(speech)["text"] # type: ignore
|
11 |
return text
|
12 |
|
13 |
|
14 |
def text_to_sentiment(text):
|
15 |
+
return classifier(text)[0]["label"] # type: ignore
|
16 |
|
17 |
|
18 |
demo = gr.Blocks()
|