freddyaboulton HF Staff commited on
Commit
6a42799
·
verified ·
1 Parent(s): 840333c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -191
app.py CHANGED
@@ -1,7 +1,5 @@
1
  import io
2
  import math
3
- from queue import Queue
4
- from threading import Thread
5
  from typing import Optional
6
 
7
  import numpy as np
@@ -12,7 +10,6 @@ import torch
12
  from parler_tts import ParlerTTSForConditionalGeneration
13
  from pydub import AudioSegment
14
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
15
- from transformers.generation.streamers import BaseStreamer
16
  from huggingface_hub import InferenceClient
17
  import nltk
18
  nltk.download('punkt')
@@ -38,135 +35,6 @@ SAMPLE_RATE = feature_extractor.sampling_rate
38
  SEED = 42
39
 
40
 
41
- class ParlerTTSStreamer(BaseStreamer):
42
- def __init__(
43
- self,
44
- model: ParlerTTSForConditionalGeneration,
45
- device: Optional[str] = None,
46
- play_steps: Optional[int] = 10,
47
- stride: Optional[int] = None,
48
- timeout: Optional[float] = None,
49
- ):
50
- """
51
- Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
52
- useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
53
- Gradio demo).
54
- Parameters:
55
- model (`ParlerTTSForConditionalGeneration`):
56
- The Parler-TTS model used to generate the audio waveform.
57
- device (`str`, *optional*):
58
- The torch device on which to run the computation. If `None`, will default to the device of the model.
59
- play_steps (`int`, *optional*, defaults to 10):
60
- The number of generation steps with which to return the generated audio array. Using fewer steps will
61
- mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
62
- should be tuned to your device and latency requirements.
63
- stride (`int`, *optional*):
64
- The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
65
- the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
66
- play_steps // 6 in the audio space.
67
- timeout (`int`, *optional*):
68
- The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
69
- in `.generate()`, when it is called in a separate thread.
70
- """
71
- self.decoder = model.decoder
72
- self.audio_encoder = model.audio_encoder
73
- self.generation_config = model.generation_config
74
- self.device = device if device is not None else model.device
75
-
76
- # variables used in the streaming process
77
- self.play_steps = play_steps
78
- if stride is not None:
79
- self.stride = stride
80
- else:
81
- hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
82
- self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
83
- self.token_cache = None
84
- self.to_yield = 0
85
-
86
- # varibles used in the thread process
87
- self.audio_queue = Queue()
88
- self.stop_signal = None
89
- self.timeout = timeout
90
-
91
- def apply_delay_pattern_mask(self, input_ids):
92
- # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
93
- _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
94
- input_ids[:, :1],
95
- bos_token_id=self.generation_config.bos_token_id,
96
- pad_token_id=self.generation_config.decoder_start_token_id,
97
- max_length=input_ids.shape[-1],
98
- )
99
- # apply the pattern mask to the input ids
100
- input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
101
-
102
- # revert the pattern delay mask by filtering the pad token id
103
- mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
104
- input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
105
- # append the frame dimension back to the audio codes
106
- input_ids = input_ids[None, ...]
107
-
108
- # send the input_ids to the correct device
109
- input_ids = input_ids.to(self.audio_encoder.device)
110
-
111
- decode_sequentially = (
112
- self.generation_config.bos_token_id in input_ids
113
- or self.generation_config.pad_token_id in input_ids
114
- or self.generation_config.eos_token_id in input_ids
115
- )
116
- if not decode_sequentially:
117
- output_values = self.audio_encoder.decode(
118
- input_ids,
119
- audio_scales=[None],
120
- )
121
- else:
122
- sample = input_ids[:, 0]
123
- sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
124
- sample = sample[:, :, sample_mask]
125
- output_values = self.audio_encoder.decode(sample[None, ...], [None])
126
-
127
- audio_values = output_values.audio_values[0, 0]
128
- return audio_values.cpu().float().numpy()
129
-
130
- def put(self, value):
131
- batch_size = value.shape[0] // self.decoder.num_codebooks
132
- if batch_size > 1:
133
- raise ValueError("ParlerTTSStreamer only supports batch size 1")
134
-
135
- if self.token_cache is None:
136
- self.token_cache = value
137
- else:
138
- self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
139
-
140
- if self.token_cache.shape[-1] % self.play_steps == 0:
141
- audio_values = self.apply_delay_pattern_mask(self.token_cache)
142
- self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
143
- self.to_yield += len(audio_values) - self.to_yield - self.stride
144
-
145
- def end(self):
146
- """Flushes any remaining cache and appends the stop symbol."""
147
- if self.token_cache is not None:
148
- audio_values = self.apply_delay_pattern_mask(self.token_cache)
149
- else:
150
- audio_values = np.zeros(self.to_yield)
151
-
152
- self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
153
-
154
- def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
155
- """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
156
- self.audio_queue.put(audio, timeout=self.timeout)
157
- if stream_end:
158
- self.audio_queue.put(self.stop_signal, timeout=self.timeout)
159
-
160
- def __iter__(self):
161
- return self
162
-
163
- def __next__(self):
164
- value = self.audio_queue.get(timeout=self.timeout)
165
- if not isinstance(value, np.ndarray) and value == self.stop_signal:
166
- raise StopIteration()
167
- else:
168
- return value
169
-
170
  def numpy_to_mp3(audio_array, sampling_rate):
171
  # Normalize audio_array if it's floating-point
172
  if np.issubdtype(audio_array.dtype, np.floating):
@@ -195,8 +63,7 @@ def numpy_to_mp3(audio_array, sampling_rate):
195
  sampling_rate = model.audio_encoder.config.sampling_rate
196
  frame_rate = model.audio_encoder.config.frame_rate
197
 
198
- import random
199
- import datetime
200
 
201
  @spaces.GPU
202
  def generate_base(subject, setting):
@@ -234,67 +101,10 @@ def stream_audio(state):
234
 
235
  story = ""
236
  for sentence, new_audio in zip(sentences, speech_output):
237
- # print(f"i, j, time: {i}, {j} {datetime.datetime.now()}")
238
  print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
239
  story += f"{sentence}\n"
240
  yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
241
 
242
- # BATCH_SIZE = 4
243
- # for i in range(0, len(model_input), BATCH_SIZE):
244
- # inputs = model_input[i:min(i + BATCH_SIZE, len(model_input))]
245
- # story_tokens = tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to(device)
246
- # description_tokens = tokenizer([description for _ in range(len(inputs))], return_tensors="pt").input_ids.to(device)
247
- # speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story_tokens)
248
-
249
- # speech_output = [output.cpu().numpy() for output in speech_output]
250
- # for j, new_audio in enumerate(speech_output):
251
- # if i + j == 0:
252
- # gr.Info("Reading story", duration=3)
253
- # print(f"i, j, time: {i}, {j} {datetime.datetime.now()}")
254
- # print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
255
- # yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
256
-
257
- # if len(inputs) != 0:
258
- # input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
259
- # story = tokenizer(model_input, return_tensors="pt", padding=True).input_ids.to(device)
260
-
261
- # speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story)
262
-
263
- # speech_output = [output.cpu().numpy() for output in speech_output]
264
-
265
- # for i, new_audio in enumerate(speech_output):
266
- # if i == 0:
267
- # gr.Info("Reading story", duration=3)
268
- # print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
269
- # yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
270
-
271
- # print(f"{i}-th part generated")
272
- # pieces += [*speech_output, silence.copy()]
273
-
274
- # for i, sentence in enumerate(model_input):
275
- # streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
276
-
277
- # prompt = tokenizer(sentence, return_tensors="pt").to(device)
278
-
279
- # generation_kwargs = dict(
280
- # input_ids=inputs.input_ids,
281
- # prompt_input_ids=prompt.input_ids,
282
- # streamer=streamer,
283
- # do_sample=True,
284
- # temperature=1.0,
285
- # min_new_tokens=10,
286
- # )
287
-
288
- # set_seed(SEED)
289
- # thread = Thread(target=model.generate, kwargs=generation_kwargs)
290
- # thread.start()
291
-
292
- # for new_audio in streamer:
293
- # if i == 0:
294
- # gr.Info("Reading story", duration=3)
295
- # print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
296
- # yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
297
-
298
 
299
  with gr.Blocks() as block:
300
  gr.HTML(
 
1
  import io
2
  import math
 
 
3
  from typing import Optional
4
 
5
  import numpy as np
 
10
  from parler_tts import ParlerTTSForConditionalGeneration
11
  from pydub import AudioSegment
12
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
 
13
  from huggingface_hub import InferenceClient
14
  import nltk
15
  nltk.download('punkt')
 
35
  SEED = 42
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  def numpy_to_mp3(audio_array, sampling_rate):
39
  # Normalize audio_array if it's floating-point
40
  if np.issubdtype(audio_array.dtype, np.floating):
 
63
  sampling_rate = model.audio_encoder.config.sampling_rate
64
  frame_rate = model.audio_encoder.config.frame_rate
65
 
66
+
 
67
 
68
  @spaces.GPU
69
  def generate_base(subject, setting):
 
101
 
102
  story = ""
103
  for sentence, new_audio in zip(sentences, speech_output):
 
104
  print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
105
  story += f"{sentence}\n"
106
  yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
  with gr.Blocks() as block:
110
  gr.HTML(