Spaces:
Sleeping
Sleeping
Commit
·
f8727f7
1
Parent(s):
7341dff
use streaming
Browse files
app.py
CHANGED
|
@@ -4,45 +4,14 @@ import cv2
|
|
| 4 |
import tempfile
|
| 5 |
from ultralytics import YOLOv10
|
| 6 |
|
| 7 |
-
|
| 8 |
-
def yolov10_inference(image, video, model_id, image_size, conf_threshold):
|
| 9 |
-
model = YOLOv10.from_pretrained(f'jameslahm/{model_id}')
|
| 10 |
-
if image:
|
| 11 |
-
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold)
|
| 12 |
-
annotated_image = results[0].plot()
|
| 13 |
-
return annotated_image[:, :, ::-1], None
|
| 14 |
-
else:
|
| 15 |
-
video_path = tempfile.mktemp(suffix=".webm")
|
| 16 |
-
with open(video_path, "wb") as f:
|
| 17 |
-
with open(video, "rb") as g:
|
| 18 |
-
f.write(g.read())
|
| 19 |
-
|
| 20 |
-
cap = cv2.VideoCapture(video_path)
|
| 21 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 22 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 23 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 24 |
-
|
| 25 |
-
output_video_path = tempfile.mktemp(suffix=".webm")
|
| 26 |
-
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
|
| 27 |
-
|
| 28 |
-
while cap.isOpened():
|
| 29 |
-
ret, frame = cap.read()
|
| 30 |
-
if not ret:
|
| 31 |
-
break
|
| 32 |
-
|
| 33 |
-
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold)
|
| 34 |
-
annotated_frame = results[0].plot()
|
| 35 |
-
out.write(annotated_frame)
|
| 36 |
-
|
| 37 |
-
cap.release()
|
| 38 |
-
out.release()
|
| 39 |
-
|
| 40 |
-
return None, output_video_path
|
| 41 |
|
| 42 |
@spaces.GPU
|
| 43 |
-
def
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
def app():
|
|
@@ -50,31 +19,6 @@ def app():
|
|
| 50 |
with gr.Row():
|
| 51 |
with gr.Column():
|
| 52 |
image = gr.Image(type="pil", label="Image", visible=True)
|
| 53 |
-
video = gr.Video(label="Video", visible=False)
|
| 54 |
-
input_type = gr.Radio(
|
| 55 |
-
choices=["Image", "Video"],
|
| 56 |
-
value="Image",
|
| 57 |
-
label="Input Type",
|
| 58 |
-
)
|
| 59 |
-
model_id = gr.Dropdown(
|
| 60 |
-
label="Model",
|
| 61 |
-
choices=[
|
| 62 |
-
"yolov10n",
|
| 63 |
-
"yolov10s",
|
| 64 |
-
"yolov10m",
|
| 65 |
-
"yolov10b",
|
| 66 |
-
"yolov10l",
|
| 67 |
-
"yolov10x",
|
| 68 |
-
],
|
| 69 |
-
value="yolov10m",
|
| 70 |
-
)
|
| 71 |
-
image_size = gr.Slider(
|
| 72 |
-
label="Image Size",
|
| 73 |
-
minimum=320,
|
| 74 |
-
maximum=1280,
|
| 75 |
-
step=32,
|
| 76 |
-
value=640,
|
| 77 |
-
)
|
| 78 |
conf_threshold = gr.Slider(
|
| 79 |
label="Confidence Threshold",
|
| 80 |
minimum=0.0,
|
|
@@ -82,64 +26,18 @@ def app():
|
|
| 82 |
step=0.05,
|
| 83 |
value=0.25,
|
| 84 |
)
|
| 85 |
-
yolov10_infer = gr.Button(value="Detect Objects")
|
| 86 |
|
| 87 |
with gr.Column():
|
| 88 |
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
| 89 |
-
output_video = gr.Video(label="Annotated Video", visible=False)
|
| 90 |
-
|
| 91 |
-
def update_visibility(input_type):
|
| 92 |
-
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
| 93 |
-
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
| 94 |
-
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
| 95 |
-
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
| 96 |
-
|
| 97 |
-
return image, video, output_image, output_video
|
| 98 |
-
|
| 99 |
-
input_type.change(
|
| 100 |
-
fn=update_visibility,
|
| 101 |
-
inputs=[input_type],
|
| 102 |
-
outputs=[image, video, output_image, output_video],
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
def run_inference(image, video, model_id, image_size, conf_threshold, input_type):
|
| 106 |
-
if input_type == "Image":
|
| 107 |
-
return yolov10_inference(image, None, model_id, image_size, conf_threshold)
|
| 108 |
-
else:
|
| 109 |
-
return yolov10_inference(None, video, model_id, image_size, conf_threshold)
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
-
gr.Examples(
|
| 119 |
-
examples=[
|
| 120 |
-
[
|
| 121 |
-
"bus.jpg",
|
| 122 |
-
"yolov10s",
|
| 123 |
-
640,
|
| 124 |
-
0.25,
|
| 125 |
-
],
|
| 126 |
-
[
|
| 127 |
-
"zidane.jpg",
|
| 128 |
-
"yolov10s",
|
| 129 |
-
640,
|
| 130 |
-
0.25,
|
| 131 |
-
],
|
| 132 |
-
],
|
| 133 |
-
fn=yolov10_inference_for_examples,
|
| 134 |
-
inputs=[
|
| 135 |
-
image,
|
| 136 |
-
model_id,
|
| 137 |
-
image_size,
|
| 138 |
-
conf_threshold,
|
| 139 |
-
],
|
| 140 |
-
outputs=[output_image],
|
| 141 |
-
cache_examples='lazy',
|
| 142 |
-
)
|
| 143 |
|
| 144 |
gradio_app = gr.Blocks()
|
| 145 |
with gradio_app:
|
|
|
|
| 4 |
import tempfile
|
| 5 |
from ultralytics import YOLOv10
|
| 6 |
|
| 7 |
+
model = YOLOv10.from_pretrained(f'jameslahm/yolov10s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
@spaces.GPU
|
| 10 |
+
def yolov10_inference(image, conf_threshold):
|
| 11 |
+
width, _ = image.size
|
| 12 |
+
results = model.predict(source=image, imgsz=width, conf=conf_threshold)
|
| 13 |
+
annotated_image = results[0].plot()
|
| 14 |
+
return annotated_image[:, :, ::-1]
|
| 15 |
|
| 16 |
|
| 17 |
def app():
|
|
|
|
| 19 |
with gr.Row():
|
| 20 |
with gr.Column():
|
| 21 |
image = gr.Image(type="pil", label="Image", visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
conf_threshold = gr.Slider(
|
| 23 |
label="Confidence Threshold",
|
| 24 |
minimum=0.0,
|
|
|
|
| 26 |
step=0.05,
|
| 27 |
value=0.25,
|
| 28 |
)
|
|
|
|
| 29 |
|
| 30 |
with gr.Column():
|
| 31 |
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
image.stream(
|
| 34 |
+
fn=yolov10_inference,
|
| 35 |
+
inputs=[image, conf_threshold],
|
| 36 |
+
outputs=[image],
|
| 37 |
+
stream_every=0.1,
|
| 38 |
+
time_limit=30
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
gradio_app = gr.Blocks()
|
| 43 |
with gradio_app:
|