# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from dataclasses import dataclass, field from typing import List from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class TriangularLRScheduleConfig(FairseqDataclass): max_lr: float = field( default="???", metadata={"help": "max learning rate, must be more than cfg.lr"} ) lr_period_updates: float = field( default=5000, metadata={"help": "initial number of updates per period (cycle length)"}, ) lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) shrink_min: bool = field( default=False, metadata={"help": "if set, also shrinks min lr"} ) lr: List[float] = II("optimization.lr") @register_lr_scheduler("triangular", dataclass=TriangularLRScheduleConfig) class TriangularLRSchedule(FairseqLRScheduler): """Assign LR based on a triangular cyclical schedule. See https://arxiv.org/pdf/1506.01186.pdf for details. """ def __init__(self, cfg: TriangularLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with triangular." " Consider --lr-scheduler=fixed instead." ) lr = cfg.lr[0] assert cfg.max_lr > lr, "max_lr must be more than lr" self.min_lr = lr self.max_lr = cfg.max_lr self.stepsize = cfg.lr_period_updates // 2 self.lr_shrink = cfg.lr_shrink self.shrink_min = cfg.shrink_min # initial learning rate self.lr = self.min_lr self.optimizer.set_lr(self.lr) def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" cycle = math.floor(num_updates / (2 * self.stepsize)) lr_shrink = self.lr_shrink ** cycle max_lr = self.max_lr * lr_shrink if self.shrink_min: min_lr = self.min_lr * lr_shrink else: min_lr = self.min_lr x = abs(num_updates / self.stepsize - 2 * (cycle + 1) + 1) self.lr = min_lr + (max_lr - min_lr) * max(0, (1 - x)) self.optimizer.set_lr(self.lr) return self.lr