# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from dataclasses import dataclass, field from typing import List import torch.optim.lr_scheduler from omegaconf import II from fairseq.dataclass import FairseqDataclass from fairseq.optim.lr_scheduler import FairseqLRScheduler, register_lr_scheduler @dataclass class ReduceLROnPlateauLRScheduleConfig(FairseqDataclass): lr_shrink: float = field( default=0.1, metadata={"help": "shrink factor for annealing"} ) lr_threshold: float = field( default=1e-4, metadata={ "help": ( "threshold for measuring the new optimum, to only focus on " "significant changes" ) }, ) lr_patience: int = field( default=0, metadata={ "help": ( "number of epochs with no improvement after which learning rate will " "be reduced" ) }, ) warmup_updates: int = field( default=0, metadata={"help": "warmup the learning rate linearly for the first N updates"}, ) warmup_init_lr: float = field( default=-1, metadata={ "help": "initial learning rate during warmup phase; default is cfg.lr" }, ) lr: List[float] = II("optimization.lr") maximize_best_checkpoint_metric: bool = II( "checkpoint.maximize_best_checkpoint_metric" ) @register_lr_scheduler( "reduce_lr_on_plateau", dataclass=ReduceLROnPlateauLRScheduleConfig ) class ReduceLROnPlateauLRSchedule(FairseqLRScheduler): """ Decay the LR by a factor every time the validation loss plateaus. Also comes with optional warmup phase, where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter the lr is adjusted according to original reduce_on_plateau scheme. During warmup:: lrs = torch.linspace( cfg.warmup_init_lr, cfg.lr, cfg.warmup_updates ) lr = lrs[update_num] """ def __init__(self, cfg: ReduceLROnPlateauLRScheduleConfig, optimizer): super().__init__(cfg, optimizer) if len(cfg.lr) > 1: raise ValueError( "Cannot use a fixed learning rate schedule with reduce_lr_on_plateau." " Consider --lr-scheduler=fixed instead." ) self.lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( self.optimizer.optimizer, patience=cfg.lr_patience, factor=cfg.lr_shrink, mode="max" if cfg.maximize_best_checkpoint_metric else "min", threshold=cfg.lr_threshold, ) warmup_end_lr = cfg.lr[0] # if no warm up, sets initial lr to be cfg.lr[0] if cfg.warmup_init_lr < 0: cfg.warmup_init_lr = 0 if cfg.warmup_updates > 0 else warmup_end_lr # linearly warmup for the first cfg.warmup_updates if cfg.warmup_updates > 0: self.lr_step = (warmup_end_lr - cfg.warmup_init_lr) / cfg.warmup_updates # this flag is either set from arg when no warm up, or set by # step_update() when warmup finishes self.warmup_end = True if cfg.warmup_updates <= 0 else False # initial learning rate # this self.lr is used only during init and/or warm up period self.lr = cfg.warmup_init_lr self.optimizer.set_lr(self.lr) def state_dict(self): """Return the LR scheduler state dict.""" return { "best": self.lr_scheduler.best, "last_epoch": self.lr_scheduler.last_epoch, } def load_state_dict(self, state_dict): """Load an LR scheduler state dict.""" self.lr_scheduler.best = state_dict["best"] if "last_epoch" in state_dict: self.lr_scheduler.last_epoch = state_dict["last_epoch"] def step(self, epoch, val_loss=None): """ Update the learning rate at the end of the given epoch if warmup finishes otherwise no update of lr on epoch boundaries """ if val_loss is not None and self.warmup_end is True: self.lr_scheduler.step(val_loss) else: self.lr_scheduler.last_epoch = epoch return self.optimizer.get_lr() def step_update(self, num_updates): """ Update the learning rate after each update.""" # if there is warmup if self.cfg.warmup_updates > 0: if num_updates <= self.cfg.warmup_updates: self.lr = self.cfg.warmup_init_lr + num_updates * self.lr_step self.optimizer.set_lr(self.lr) else: if self.warmup_end is False: self.warmup_end = True # else do nothing return self.optimizer.get_lr()