# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import math import os import sys import soundfile as sf import torch import torchaudio import tqdm from npy_append_array import NpyAppendArray logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("dump_mfcc_feature") class MfccFeatureReader(object): def __init__(self, sample_rate): self.sample_rate = sample_rate def read_audio(self, path, ref_len=None): wav, sr = sf.read(path) assert sr == self.sample_rate, sr if wav.ndim == 2: wav = wav.mean(-1) assert wav.ndim == 1, wav.ndim if ref_len is not None and abs(ref_len - len(wav)) > 160: logging.warning(f"ref {ref_len} != read {len(wav)} ({path})") return wav def get_feats(self, path, ref_len=None): x = self.read_audio(path, ref_len) with torch.no_grad(): x = torch.from_numpy(x).float() x = x.view(1, -1) mfccs = torchaudio.compliance.kaldi.mfcc( waveform=x, sample_frequency=self.sample_rate, use_energy=False, ) # (time, freq) mfccs = mfccs.transpose(0, 1) # (freq, time) deltas = torchaudio.functional.compute_deltas(mfccs) ddeltas = torchaudio.functional.compute_deltas(deltas) concat = torch.cat([mfccs, deltas, ddeltas], dim=0) concat = concat.transpose(0, 1).contiguous() # (freq, time) return concat def get_path_iterator(tsv, nshard, rank): with open(tsv, "r") as f: root = f.readline().rstrip() lines = [line.rstrip() for line in f] tot = len(lines) shard_size = math.ceil(tot / nshard) start, end = rank * shard_size, min((rank + 1) * shard_size, tot) assert start < end, "start={start}, end={end}" logger.info( f"rank {rank} of {nshard}, process {end-start} " f"({start}-{end}) out of {tot}" ) lines = lines[start:end] def iterate(): for line in lines: subpath, nsample = line.split("\t") yield f"{root}/{subpath}", int(nsample) return iterate, len(lines) def dump_feature(tsv_dir, split, sample_rate, nshard, rank, feat_dir): reader = MfccFeatureReader(sample_rate) generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank) iterator = generator() feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy" leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len" os.makedirs(feat_dir, exist_ok=True) if os.path.exists(feat_path): os.remove(feat_path) feat_f = NpyAppendArray(feat_path) with open(leng_path, "w") as leng_f: for path, nsample in tqdm.tqdm(iterator, total=num): feat = reader.get_feats(path, nsample) feat_f.append(feat.cpu().numpy()) leng_f.write(f"{len(feat)}\n") logger.info("finished successfully") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("tsv_dir") parser.add_argument("split") parser.add_argument("nshard", type=int) parser.add_argument("rank", type=int) parser.add_argument("feat_dir") parser.add_argument("--sample_rate", type=int, default=16000) args = parser.parse_args() logger.info(args) dump_feature(**vars(args))