|
|
|
|
|
|
|
|
|
|
|
import types |
|
|
|
import torch |
|
|
|
|
|
def get_fused_adam_class(): |
|
""" |
|
Look for the FusedAdam optimizer from apex. We first try to load the |
|
"contrib" interface, which is a bit faster than the main interface, |
|
but is technically deprecated. |
|
""" |
|
try: |
|
|
|
|
|
|
|
|
|
global fused_adam_cuda |
|
import importlib |
|
|
|
fused_adam_cuda = importlib.import_module("fused_adam_cuda") |
|
return FusedAdamV1 |
|
except ImportError: |
|
try: |
|
|
|
from apex.optimizers import FusedAdam as _FusedAdam |
|
from apex.multi_tensor_apply import multi_tensor_applier |
|
|
|
if multi_tensor_applier.available: |
|
return FusedAdamV2 |
|
except ImportError: |
|
pass |
|
return None |
|
|
|
|
|
class FusedAdamV1(torch.optim.Optimizer): |
|
""" |
|
Implements Adam algorithm. Currently GPU-only. Requires Apex to be installed via |
|
``python setup.py install --cuda_ext --cpp_ext``. |
|
|
|
It has been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
|
|
Compared to the original version in Apex, the fairseq version casts grads |
|
and params to FP32 internally to support ``--memory-efficient-fp16``. |
|
|
|
Args: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, |
|
adds eps to the bias-corrected second moment estimate before |
|
evaluating square root instead of adding it to the square root of |
|
second moment estimate as in the original paper. (default: False) |
|
.. _Adam: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
eps_inside_sqrt=False, |
|
weight_decay=0.0, |
|
max_grad_norm=0.0, |
|
amsgrad=False, |
|
): |
|
global fused_adam_cuda |
|
import importlib |
|
|
|
fused_adam_cuda = importlib.import_module("fused_adam_cuda") |
|
|
|
if amsgrad: |
|
raise RuntimeError("FusedAdam does not support the AMSGrad variant.") |
|
defaults = { |
|
"lr": lr, |
|
"bias_correction": bias_correction, |
|
"betas": betas, |
|
"eps": eps, |
|
"weight_decay": weight_decay, |
|
"max_grad_norm": max_grad_norm, |
|
} |
|
super().__init__(params, defaults) |
|
self.eps_mode = 0 if eps_inside_sqrt else 1 |
|
|
|
@property |
|
def supports_memory_efficient_fp16(self): |
|
return True |
|
|
|
@property |
|
def supports_flat_params(self): |
|
return True |
|
|
|
@property |
|
def supports_step_with_scale(self): |
|
return True |
|
|
|
def step(self, closure=None, grads=None, scale=1.0, grad_norms=None): |
|
"""Performs a single optimization step. |
|
Args: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
grads (list of tensors, optional): weight gradient to use for the |
|
optimizer update. If gradients have type torch.half, parameters |
|
are expected to be in type torch.float. (default: None) |
|
output params (list of tensors, optional): A reduced precision copy |
|
of the updated weights written out in addition to the regular |
|
updated weights. Have to be of same type as gradients. (default: None) |
|
scale (float, optional): factor to divide gradient tensor values |
|
by before applying to weights. (default: 1) |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
if grads is None: |
|
grads_group = [None] * len(self.param_groups) |
|
|
|
|
|
elif isinstance(grads, types.GeneratorType): |
|
grads_group = [grads] |
|
elif type(grads[0]) != list: |
|
grads_group = [grads] |
|
else: |
|
grads_group = grads |
|
|
|
if grad_norms is None: |
|
grad_norms = [None] * len(self.param_groups) |
|
|
|
for group, grads_this_group, grad_norm in zip( |
|
self.param_groups, grads_group, grad_norms |
|
): |
|
if grads_this_group is None: |
|
grads_this_group = [None] * len(group["params"]) |
|
|
|
|
|
combined_scale = scale |
|
if group.get("max_grad_norm", 0) > 0: |
|
|
|
clip = ((grad_norm / scale) + 1e-6) / group["max_grad_norm"] |
|
if clip > 1: |
|
combined_scale = clip * scale |
|
|
|
bias_correction = 1 if group.get("bias_correction", 1) else 0 |
|
|
|
for p, grad in zip(group["params"], grads_this_group): |
|
|
|
|
|
|
|
if p.grad is None and grad is None: |
|
continue |
|
if grad is None: |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse gradients, " |
|
"please consider SparseAdam instead" |
|
) |
|
|
|
p_data_fp32 = p.data.float() |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p_data_fp32) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) |
|
else: |
|
state["exp_avg"] = state["exp_avg"].to(p_data_fp32) |
|
state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) |
|
|
|
exp_avg = state["exp_avg"] |
|
exp_avg_sq = state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
|
|
out_p = p.data |
|
with torch.cuda.device(p.device): |
|
fused_adam_cuda.adam( |
|
p_data_fp32, |
|
out_p, |
|
exp_avg, |
|
exp_avg_sq, |
|
grad, |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
combined_scale, |
|
state["step"], |
|
self.eps_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
return loss |
|
|
|
|
|
try: |
|
from apex.optimizers import FusedAdam |
|
from apex.multi_tensor_apply import multi_tensor_applier |
|
|
|
class FusedAdamV2(FusedAdam): |
|
""" |
|
Compared to the original version in Apex, the fairseq version casts grads |
|
and params to FP32 internally to support ``--memory-efficient-fp16``. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
if not hasattr(self, "multi_tensor_adam"): |
|
raise Exception( |
|
"Apex installation is outdated. Please install an updated version of apex." |
|
) |
|
|
|
@property |
|
def supports_memory_efficient_fp16(self): |
|
return True |
|
|
|
@property |
|
def supports_flat_params(self): |
|
return True |
|
|
|
def step( |
|
self, |
|
closure=None, |
|
grads=None, |
|
output_params=None, |
|
scale=None, |
|
grad_norms=None, |
|
): |
|
"""Performs a single optimization step.""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group["bias_correction"] else 0 |
|
beta1, beta2 = group["betas"] |
|
|
|
|
|
|
|
if "step" in group: |
|
group["step"] += 1 |
|
else: |
|
group["step"] = 1 |
|
|
|
|
|
g_16, p_16, orig_p_16, m_16, v_16 = [], [], [], [], [] |
|
g_32, p_32, m_32, v_32 = [], [], [], [] |
|
|
|
for p in group["params"]: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse gradients, " |
|
"please consider SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
state["exp_avg"] = torch.zeros_like(p.data, dtype=torch.float) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like( |
|
p.data, dtype=torch.float |
|
) |
|
else: |
|
state["exp_avg"] = state["exp_avg"].to( |
|
device=p.data.device, dtype=torch.float |
|
) |
|
state["exp_avg_sq"] = state["exp_avg_sq"].to( |
|
device=p.data.device, dtype=torch.float |
|
) |
|
|
|
if p.dtype == torch.float16: |
|
g_16.append(p.grad.data.float()) |
|
p_16.append(p.data.float()) |
|
orig_p_16.append(p.data) |
|
m_16.append(state["exp_avg"]) |
|
v_16.append(state["exp_avg_sq"]) |
|
elif p.dtype == torch.float32: |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state["exp_avg"]) |
|
v_32.append(state["exp_avg_sq"]) |
|
else: |
|
raise RuntimeError("FusedAdam only support fp16 and fp32.") |
|
|
|
with torch.cuda.device(p.device): |
|
if len(g_16) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_16, p_16, m_16, v_16], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
for orig_p, p in zip(orig_p_16, p_16): |
|
orig_p.copy_(p.data) |
|
if len(g_32) > 0: |
|
multi_tensor_applier( |
|
self.multi_tensor_adam, |
|
self._dummy_overflow_buf, |
|
[g_32, p_32, m_32, v_32], |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
group["step"], |
|
self.adam_w_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
return loss |
|
|
|
|
|
except ImportError: |
|
pass |
|
|