|
|
|
|
|
|
|
|
|
|
|
import logging |
|
|
|
import torch |
|
from fairseq import optim |
|
from omegaconf import DictConfig |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AMPOptimizer(optim.FairseqOptimizer): |
|
""" |
|
Wrap an *optimizer* to support AMP (automatic mixed precision) training. |
|
""" |
|
|
|
def __init__(self, cfg: DictConfig, params, fp32_optimizer, **kwargs): |
|
super().__init__(cfg.optimizer) |
|
self.fp32_optimizer = fp32_optimizer |
|
amp_kwargs = {"init_scale": cfg.common.fp16_init_scale} |
|
if getattr(cfg.common, "amp_scale_window", None) is not None: |
|
amp_kwargs["growth_interval"] = cfg.common.amp_init_scale |
|
self._grad_scaler = torch.cuda.amp.GradScaler(**amp_kwargs) |
|
self.min_loss_scale = cfg.common.min_loss_scale |
|
|
|
@classmethod |
|
def build_optimizer(cls, cfg: DictConfig, params, **kwargs): |
|
""" |
|
Args: |
|
cfg (omegaconf.DictConfig): fairseq args |
|
params (iterable): iterable of parameters to optimize |
|
""" |
|
fp32_optimizer = optim.build_optimizer(cfg.optimizer, params) |
|
return cls(cfg, params, fp32_optimizer, **kwargs) |
|
|
|
def backward(self, loss): |
|
"""Computes the sum of gradients of the given tensor w.r.t. graph leaves. |
|
|
|
Compared to :func:`fairseq.optim.FairseqOptimizer.backward`, this |
|
function additionally dynamically scales the loss to avoid gradient |
|
underflow. |
|
""" |
|
self._grad_scaler.scale(loss).backward() |
|
|
|
def step(self): |
|
self.scaler.step(self.fp32_optimizer) |
|
self.scaler.update() |
|
|
|
def clip_grad_norm(self, max_norm, aggregate_norm_fn=None): |
|
"""Clips gradient norm.""" |
|
self.scaler.unscale_(self.optimizer) |
|
grad_norm = self.fp32_optimizer.clip_grad_norm(max_norm, aggregate_norm_fn) |
|
if not torch.isfinite(grad_norm).all(): |
|
new_loss_scale = self.next_loss_scale |
|
if new_loss_scale <= self.min_loss_scale: |
|
raise FloatingPointError( |
|
( |
|
"AMP: Minimum loss scale reached ({}). Your loss is probably exploding. " |
|
"Try restarting training or use fp32. {}" |
|
).format(self.min_loss_scale, new_loss_scale) |
|
) |
|
else: |
|
logger.info("AMP: overflow detected, setting scale to " |
|
f"to {new_loss_scale}") |
|
return grad_norm |
|
|
|
@property |
|
def scaler(self): |
|
return self._grad_scaler |
|
|
|
@property |
|
def next_loss_scale(self): |
|
return self.scaler.get_scale() * self.scaler.get_backoff_factor() |
|
|
|
@property |
|
def optimizer(self): |
|
return self.fp32_optimizer.optimizer |
|
|
|
@optimizer.setter |
|
def optimizer(self, optimizer): |
|
self.fp32_optimizer.optimizer = optimizer |
|
|
|
@property |
|
def lr_scheduler(self): |
|
return getattr(self.fp32_optimizer, "lr_scheduler", None) |
|
|
|
@property |
|
def optimizer_config(self): |
|
return self.fp32_optimizer.optimizer_config |
|
|
|
def get_lr(self): |
|
return self.fp32_optimizer.get_lr() |
|
|
|
def set_lr(self, lr): |
|
self.fp32_optimizer.set_lr(lr) |
|
|
|
def all_reduce_grads(self, module): |
|
self.fp32_optimizer.all_reduce_grads(module) |
|
|
|
@property |
|
def supports_flat_params(self): |
|
return self.fp32_optimizer.supports_flat_params |
|
|