|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from fairseq import metrics, utils |
|
from fairseq.criterions import FairseqCriterion, register_criterion |
|
from fairseq.criterions.label_smoothed_cross_entropy import label_smoothed_nll_loss |
|
|
|
|
|
@register_criterion("label_smoothed_cross_entropy_r3f") |
|
class LabelSmoothedCrossEntropyR3FCriterion(FairseqCriterion): |
|
def __init__( |
|
self, task, sentence_avg, label_smoothing, eps, r3f_lambda, noise_type |
|
): |
|
super().__init__(task) |
|
self.sentence_avg = sentence_avg |
|
self.label_smoothing = label_smoothing |
|
self.eps = eps |
|
self.r3f_lambda = r3f_lambda |
|
self.noise_type = noise_type |
|
if self.noise_type in {"normal"}: |
|
self.noise_sampler = torch.distributions.normal.Normal( |
|
loc=0.0, scale=self.eps |
|
) |
|
elif self.noise_type == "uniform": |
|
self.noise_sampler = torch.distributions.uniform.Uniform( |
|
low=-self.eps, high=self.eps |
|
) |
|
else: |
|
raise Exception(f"unrecognized noise type {self.noise_type}") |
|
|
|
@staticmethod |
|
def add_args(parser): |
|
"""Add criterion-specific arguments to the parser.""" |
|
|
|
parser.add_argument('--label-smoothing', default=0., type=float, metavar='D', |
|
help='epsilon for label smoothing, 0 means no label smoothing') |
|
parser.add_argument('--eps', type=float, default=1e-5, |
|
help='noise eps') |
|
parser.add_argument('--r3f-lambda', type=float, default=1.0, |
|
help='lambda for combining logistic loss and noisy KL loss') |
|
parser.add_argument('--noise-type', type=str, default='normal', |
|
choices=['normal', 'uniform'], |
|
help='type of noises') |
|
|
|
|
|
def _get_symm_kl(self, noised_logits, input_logits): |
|
return ( |
|
F.kl_div( |
|
F.log_softmax(noised_logits, dim=-1, dtype=torch.float32), |
|
F.softmax(input_logits, dim=-1, dtype=torch.float32), |
|
None, |
|
None, |
|
"sum", |
|
) |
|
+ F.kl_div( |
|
F.log_softmax(input_logits, dim=-1, dtype=torch.float32), |
|
F.softmax(noised_logits, dim=-1, dtype=torch.float32), |
|
None, |
|
None, |
|
"sum", |
|
) |
|
) / noised_logits.size(0) |
|
|
|
def forward(self, model, sample, reduce=True): |
|
"""Compute the loss for the given sample. |
|
|
|
Returns a tuple with three elements: |
|
1) the loss |
|
2) the sample size, which is used as the denominator for the gradient |
|
3) logging outputs to display while training |
|
""" |
|
token_embeddings = model.encoder.embed_tokens(sample["net_input"]["src_tokens"]) |
|
input_logits, extra = model(**sample["net_input"]) |
|
loss, nll_loss = self.compute_loss( |
|
model, (input_logits, extra), sample, reduce=reduce |
|
) |
|
sample_size = ( |
|
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] |
|
) |
|
|
|
if model.training: |
|
noise = self.noise_sampler.sample(sample_shape=token_embeddings.shape).to( |
|
token_embeddings |
|
) |
|
noised_embeddings = token_embeddings.clone() + noise |
|
|
|
noised_logits, _ = model( |
|
**sample["net_input"], token_embeddings=noised_embeddings |
|
) |
|
symm_kl = self._get_symm_kl(noised_logits, input_logits) |
|
|
|
if model.training: |
|
symm_kl = symm_kl * sample_size |
|
loss = loss + self.r3f_lambda * symm_kl |
|
|
|
logging_output = { |
|
"loss": loss.data, |
|
"nll_loss": nll_loss.data, |
|
"ntokens": sample["ntokens"], |
|
"nsentences": sample["target"].size(0), |
|
"sample_size": sample_size, |
|
} |
|
|
|
if model.training: |
|
logging_output.update( |
|
symm_kl=utils.item(symm_kl.data) if reduce else symm_kl.data |
|
) |
|
|
|
return loss, sample_size, logging_output |
|
|
|
def compute_loss(self, model, net_output, sample, reduce=True): |
|
lprobs = model.get_normalized_probs(net_output, log_probs=True) |
|
lprobs = lprobs.view(-1, lprobs.size(-1)) |
|
target = model.get_targets(sample, net_output).view(-1, 1) |
|
loss, nll_loss = label_smoothed_nll_loss( |
|
lprobs, |
|
target, |
|
self.label_smoothing, |
|
ignore_index=self.padding_idx, |
|
reduce=reduce, |
|
) |
|
return loss, nll_loss |
|
|
|
@staticmethod |
|
def reduce_metrics(logging_outputs) -> None: |
|
"""Aggregate logging outputs from data parallel training.""" |
|
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) |
|
nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs) |
|
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) |
|
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) |
|
symm_kl_sum = sum(log.get("symm_kl", 0) for log in logging_outputs) |
|
|
|
metrics.log_scalar("symm_kl", symm_kl_sum / sample_size, sample_size, round=3) |
|
metrics.log_scalar( |
|
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 |
|
) |
|
metrics.log_scalar( |
|
"nll_loss", nll_loss_sum / ntokens / math.log(2), ntokens, round=3 |
|
) |
|
metrics.log_derived( |
|
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) |
|
) |
|
|
|
@staticmethod |
|
def logging_outputs_can_be_summed() -> bool: |
|
""" |
|
Whether the logging outputs returned by `forward` can be summed |
|
across workers prior to calling `reduce_metrics`. Setting this |
|
to True will improves distributed training speed. |
|
""" |
|
return True |
|
|