File size: 16,567 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#!/usr/bin/env python3

import logging
import math
from typing import Dict, List, Optional, Tuple

import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils, utils
from fairseq.data.data_utils import lengths_to_padding_mask
from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    register_model,
    register_model_architecture,
)
from fairseq.models.transformer import Embedding, TransformerDecoder
from fairseq.modules import LayerNorm, PositionalEmbedding, TransformerEncoderLayer
from torch import Tensor

logger = logging.getLogger(__name__)


@register_model("convtransformer")
class ConvTransformerModel(FairseqEncoderDecoderModel):
    """
    Transformer-based Speech translation model from ESPNet-ST
    https://arxiv.org/abs/2004.10234
    """

    def __init__(self, encoder, decoder):
        super().__init__(encoder, decoder)

    @staticmethod
    def add_args(parser):
        """Add model-specific arguments to the parser."""
        parser.add_argument(
            "--input-feat-per-channel",
            type=int,
            metavar="N",
            help="encoder input dimension per input channel",
        )
        parser.add_argument(
            "--activation-fn",
            choices=utils.get_available_activation_fns(),
            help="activation function to use",
        )
        parser.add_argument(
            "--dropout", type=float, metavar="D", help="dropout probability"
        )
        parser.add_argument(
            "--attention-dropout",
            type=float,
            metavar="D",
            help="dropout probability for attention weights",
        )
        parser.add_argument(
            "--activation-dropout",
            "--relu-dropout",
            type=float,
            metavar="D",
            help="dropout probability after activation in FFN.",
        )
        parser.add_argument(
            "--encoder-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension",
        )
        parser.add_argument(
            "--encoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="encoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--encoder-layers", type=int, metavar="N", help="num encoder layers"
        )
        parser.add_argument(
            "--encoder-attention-heads",
            type=int,
            metavar="N",
            help="num encoder attention heads",
        )
        parser.add_argument(
            "--encoder-normalize-before",
            action="store_true",
            help="apply layernorm before each encoder block",
        )
        parser.add_argument(
            "--decoder-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension",
        )
        parser.add_argument(
            "--decoder-ffn-embed-dim",
            type=int,
            metavar="N",
            help="decoder embedding dimension for FFN",
        )
        parser.add_argument(
            "--decoder-layers", type=int, metavar="N", help="num decoder layers"
        )
        parser.add_argument(
            "--decoder-attention-heads",
            type=int,
            metavar="N",
            help="num decoder attention heads",
        )
        parser.add_argument(
            "--decoder-normalize-before",
            action="store_true",
            help="apply layernorm before each decoder block",
        )
        parser.add_argument(
            "--decoder-output-dim",
            type=int,
            metavar="N",
            help="decoder output dimension (extra linear layer if different from decoder embed dim)",
        )
        parser.add_argument(
            "--share-decoder-input-output-embed",
            action="store_true",
            help="share decoder input and output embeddings",
        )
        parser.add_argument(
            "--layernorm-embedding",
            action="store_true",
            help="add layernorm to embedding",
        )
        parser.add_argument(
            "--no-scale-embedding",
            action="store_true",
            help="if True, dont scale embeddings",
        )
        parser.add_argument(
            "--load-pretrained-encoder-from",
            type=str,
            metavar="STR",
            help="model to take encoder weights from (for initialization)",
        )
        parser.add_argument(
            "--load-pretrained-decoder-from",
            type=str,
            metavar="STR",
            help="model to take decoder weights from (for initialization)",
        )
        parser.add_argument(
            "--conv-out-channels",
            type=int,
            metavar="INT",
            help="the number of output channels of conv layer",
        )

    @classmethod
    def build_encoder(cls, args):
        encoder = ConvTransformerEncoder(args)
        if getattr(args, "load_pretrained_encoder_from", None):
            encoder = checkpoint_utils.load_pretrained_component_from_model(
                component=encoder, checkpoint=args.load_pretrained_encoder_from
            )
        return encoder

    @classmethod
    def build_decoder(cls, args, task, embed_tokens):
        decoder = TransformerDecoderNoExtra(args, task.target_dictionary, embed_tokens)
        if getattr(args, "load_pretrained_decoder_from", None):
            decoder = checkpoint_utils.load_pretrained_component_from_model(
                component=decoder, checkpoint=args.load_pretrained_decoder_from
            )
        return decoder

    @classmethod
    def build_model(cls, args, task):
        """Build a new model instance."""

        # make sure all arguments are present in older models
        base_architecture(args)

        def build_embedding(dictionary, embed_dim):
            num_embeddings = len(dictionary)
            padding_idx = dictionary.pad()
            return Embedding(num_embeddings, embed_dim, padding_idx)

        decoder_embed_tokens = build_embedding(
            task.target_dictionary, args.decoder_embed_dim
        )
        encoder = cls.build_encoder(args)
        decoder = cls.build_decoder(args, task, decoder_embed_tokens)
        return cls(encoder, decoder)

    @staticmethod
    @torch.jit.unused
    def set_batch_first(lprobs):
        lprobs.batch_first = True

    def get_normalized_probs(
        self,
        net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
        log_probs: bool,
        sample: Optional[Dict[str, Tensor]] = None,
    ):
        # net_output['encoder_out'] is a (B, T, D) tensor
        lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
        if self.training:
            self.set_batch_first(lprobs)
        return lprobs

    def output_layout(self):
        return "BTD"

    """
    The forward method inherited from the base class has a **kwargs argument in
    its input, which is not supported in torchscript. This method overrites the forward
    method definition without **kwargs.
    """

    def forward(self, src_tokens, src_lengths, prev_output_tokens):
        encoder_out = self.encoder(src_tokens=src_tokens, src_lengths=src_lengths)
        decoder_out = self.decoder(
            prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
        )
        return decoder_out


class ConvTransformerEncoder(FairseqEncoder):
    """Conv + Transformer encoder"""

    def __init__(self, args):
        """Construct an Encoder object."""
        super().__init__(None)

        self.dropout = args.dropout
        self.embed_scale = (
            1.0 if args.no_scale_embedding else math.sqrt(args.encoder_embed_dim)
        )
        self.padding_idx = 1
        self.in_channels = 1
        self.input_dim = args.input_feat_per_channel
        self.conv = torch.nn.Sequential(
            torch.nn.Conv2d(1, args.conv_out_channels, 3, stride=2, padding=3 // 2),
            torch.nn.ReLU(),
            torch.nn.Conv2d(
                args.conv_out_channels,
                args.conv_out_channels,
                3,
                stride=2,
                padding=3 // 2,
            ),
            torch.nn.ReLU(),
        )
        transformer_input_dim = self.infer_conv_output_dim(
            self.in_channels, self.input_dim, args.conv_out_channels
        )
        self.out = torch.nn.Linear(transformer_input_dim, args.encoder_embed_dim)
        self.embed_positions = PositionalEmbedding(
            args.max_source_positions,
            args.encoder_embed_dim,
            self.padding_idx,
            learned=False,
        )

        self.transformer_layers = nn.ModuleList([])
        self.transformer_layers.extend(
            [TransformerEncoderLayer(args) for i in range(args.encoder_layers)]
        )
        if args.encoder_normalize_before:
            self.layer_norm = LayerNorm(args.encoder_embed_dim)
        else:
            self.layer_norm = None

    def pooling_ratio(self):
        return 4

    def infer_conv_output_dim(self, in_channels, input_dim, out_channels):
        sample_seq_len = 200
        sample_bsz = 10
        x = torch.randn(sample_bsz, in_channels, sample_seq_len, input_dim)
        x = torch.nn.Conv2d(1, out_channels, 3, stride=2, padding=3 // 2)(x)
        x = torch.nn.Conv2d(out_channels, out_channels, 3, stride=2, padding=3 // 2)(x)
        x = x.transpose(1, 2)
        mb, seq = x.size()[:2]
        return x.contiguous().view(mb, seq, -1).size(-1)

    def forward(self, src_tokens, src_lengths):
        """Encode input sequence.
        :param torch.Tensor xs: input tensor
        :param torch.Tensor masks: input mask
        :return: position embedded tensor and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]:
        """
        bsz, max_seq_len, _ = src_tokens.size()
        x = (
            src_tokens.view(bsz, max_seq_len, self.in_channels, self.input_dim)
            .transpose(1, 2)
            .contiguous()
        )
        x = self.conv(x)
        bsz, _, output_seq_len, _ = x.size()
        x = x.transpose(1, 2).transpose(0, 1).contiguous().view(output_seq_len, bsz, -1)
        x = self.out(x)
        x = self.embed_scale * x

        subsampling_factor = int(max_seq_len * 1.0 / output_seq_len + 0.5)
        input_len_0 = (src_lengths.float() / subsampling_factor).ceil().long()
        input_len_1 = x.size(0) * torch.ones([src_lengths.size(0)]).long().to(
            input_len_0.device
        )
        input_lengths = torch.min(input_len_0, input_len_1)

        encoder_padding_mask = lengths_to_padding_mask(input_lengths)

        positions = self.embed_positions(encoder_padding_mask).transpose(0, 1)
        x += positions
        x = F.dropout(x, p=self.dropout, training=self.training)

        for layer in self.transformer_layers:
            x = layer(x, encoder_padding_mask)

        if not encoder_padding_mask.any():
            maybe_encoder_padding_mask = None
        else:
            maybe_encoder_padding_mask = encoder_padding_mask

        return {
            "encoder_out": [x],
            "encoder_padding_mask": [maybe_encoder_padding_mask]
            if maybe_encoder_padding_mask is not None
            else [],
            "encoder_embedding": [],
            "encoder_states": [],
            "src_tokens": [],
            "src_lengths": [],
        }

    @torch.jit.export
    def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order):
        """
        Reorder encoder output according to *new_order*.

        Args:
            encoder_out: output from the ``forward()`` method
            new_order (LongTensor): desired order

        Returns:
            *encoder_out* rearranged according to *new_order*
        """
        new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)]
        if len(encoder_out["encoder_padding_mask"]) == 0:
            new_encoder_padding_mask = []
        else:
            new_encoder_padding_mask = [
                (encoder_out["encoder_padding_mask"][0]).index_select(0, new_order)
            ]
        if len(encoder_out["encoder_embedding"]) == 0:
            new_encoder_embedding = []
        else:
            new_encoder_embedding = [
                (encoder_out["encoder_embedding"][0]).index_select(0, new_order)
            ]
        encoder_states = encoder_out["encoder_states"]
        if len(encoder_states) > 0:
            for idx, state in enumerate(encoder_states):
                encoder_states[idx] = state.index_select(1, new_order)

        return {
            "encoder_out": new_encoder_out,
            "encoder_padding_mask": new_encoder_padding_mask,
            "encoder_embedding": new_encoder_embedding,
            "encoder_states": encoder_states,
            "src_tokens": [],
            "src_lengths": [],
        }


class TransformerDecoderNoExtra(TransformerDecoder):
    def extract_features(
        self,
        prev_output_tokens,
        encoder_out: Optional[Dict[str, List[Tensor]]],
        incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
        full_context_alignment: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        # call scriptable method from parent class
        x, _ = self.extract_features_scriptable(
            prev_output_tokens,
            encoder_out,
            incremental_state,
            full_context_alignment,
            alignment_layer,
            alignment_heads,
        )
        return x, None


@register_model_architecture(model_name="convtransformer", arch_name="convtransformer")
def base_architecture(args):
    args.input_feat_per_channel = getattr(args, "input_feat_per_channel", 80)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0.0)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
    args.no_scale_embedding = getattr(args, "no_scale_embedding", False)
    args.quant_noise_pq = getattr(args, "quant_noise_pq", 0)
    args.max_source_positions = getattr(args, "max_source_positions", 3000)
    args.max_target_positions = getattr(args, "max_target_positions", 1024)
    args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False)
    args.conv_out_channels = getattr(args, "conv_out_channels", args.encoder_embed_dim)


@register_model_architecture("convtransformer", "convtransformer_espnet")
def convtransformer_espnet(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 256)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 4)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 4)