File size: 8,647 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel
def _sequential_poisoning(s, V, beta=0.33, bos=2, eos=3, pad=1):
# s: input batch
# V: vocabulary size
rand_words = torch.randint(low=4, high=V, size=s.size(), device=s.device)
choices = torch.rand(size=s.size(), device=s.device)
choices.masked_fill_((s == pad) | (s == bos) | (s == eos), 1)
replace = choices < beta / 3
repeat = (choices >= beta / 3) & (choices < beta * 2 / 3)
swap = (choices >= beta * 2 / 3) & (choices < beta)
safe = choices >= beta
for i in range(s.size(1) - 1):
rand_word = rand_words[:, i]
next_word = s[:, i + 1]
self_word = s[:, i]
replace_i = replace[:, i]
swap_i = swap[:, i] & (next_word != 3)
repeat_i = repeat[:, i] & (next_word != 3)
safe_i = safe[:, i] | ((next_word == 3) & (~replace_i))
s[:, i] = (
self_word * (safe_i | repeat_i).long()
+ next_word * swap_i.long()
+ rand_word * replace_i.long()
)
s[:, i + 1] = (
next_word * (safe_i | replace_i).long()
+ self_word * (swap_i | repeat_i).long()
)
return s
def gumbel_noise(input, TINY=1e-8):
return (
input.new_zeros(*input.size())
.uniform_()
.add_(TINY)
.log_()
.neg_()
.add_(TINY)
.log_()
.neg_()
)
@register_model("iterative_nonautoregressive_transformer")
class IterNATransformerModel(NATransformerModel):
@staticmethod
def add_args(parser):
NATransformerModel.add_args(parser)
parser.add_argument(
"--train-step",
type=int,
help="number of refinement iterations during training",
)
parser.add_argument(
"--dae-ratio",
type=float,
help="the probability of switching to the denoising auto-encoder loss",
)
parser.add_argument(
"--stochastic-approx",
action="store_true",
help="sampling from the decoder as the inputs for next iteration",
)
@classmethod
def build_model(cls, args, task):
model = super().build_model(args, task)
model.train_step = getattr(args, "train_step", 4)
model.dae_ratio = getattr(args, "dae_ratio", 0.5)
model.stochastic_approx = getattr(args, "stochastic_approx", False)
return model
def forward(
self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
):
B, T = prev_output_tokens.size()
# encoding
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
# length prediction
length_out = self.decoder.forward_length(
normalize=False, encoder_out=encoder_out
)
length_tgt = self.decoder.forward_length_prediction(
length_out, encoder_out, tgt_tokens
)
# decoding
word_ins_outs, word_ins_tgts, word_ins_masks = [], [], []
for t in range(self.train_step):
word_ins_out = self.decoder(
normalize=False,
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
step=t,
)
word_ins_tgt = tgt_tokens
word_ins_mask = word_ins_tgt.ne(self.pad)
word_ins_outs.append(word_ins_out)
word_ins_tgts.append(word_ins_tgt)
word_ins_masks.append(word_ins_mask)
if t < (self.train_step - 1):
# prediction for next iteration
if self.stochastic_approx:
word_ins_prediction = (
word_ins_out + gumbel_noise(word_ins_out)
).max(-1)[1]
else:
word_ins_prediction = word_ins_out.max(-1)[1]
prev_output_tokens = prev_output_tokens.masked_scatter(
word_ins_mask, word_ins_prediction[word_ins_mask]
)
if self.dae_ratio > 0:
# we do not perform denoising for the first iteration
corrputed = (
torch.rand(size=(B,), device=prev_output_tokens.device)
< self.dae_ratio
)
corrputed_tokens = _sequential_poisoning(
tgt_tokens[corrputed],
len(self.tgt_dict),
0.33,
self.bos,
self.eos,
self.pad,
)
prev_output_tokens[corrputed] = corrputed_tokens
# concat everything
word_ins_out = torch.cat(word_ins_outs, 0)
word_ins_tgt = torch.cat(word_ins_tgts, 0)
word_ins_mask = torch.cat(word_ins_masks, 0)
return {
"word_ins": {
"out": word_ins_out,
"tgt": word_ins_tgt,
"mask": word_ins_mask,
"ls": self.args.label_smoothing,
"nll_loss": True,
},
"length": {
"out": length_out,
"tgt": length_tgt,
"factor": self.decoder.length_loss_factor,
},
}
@register_model_architecture(
"iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer"
)
def inat_base_architecture(args):
args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
args.encoder_layers = getattr(args, "encoder_layers", 6)
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
args.decoder_ffn_embed_dim = getattr(
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
)
args.decoder_layers = getattr(args, "decoder_layers", 6)
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
args.attention_dropout = getattr(args, "attention_dropout", 0.0)
args.activation_dropout = getattr(args, "activation_dropout", 0.0)
args.activation_fn = getattr(args, "activation_fn", "relu")
args.dropout = getattr(args, "dropout", 0.1)
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
args.share_decoder_input_output_embed = getattr(
args, "share_decoder_input_output_embed", False
)
args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
args.no_token_positional_embeddings = getattr(
args, "no_token_positional_embeddings", False
)
args.adaptive_input = getattr(args, "adaptive_input", False)
args.apply_bert_init = getattr(args, "apply_bert_init", False)
args.decoder_output_dim = getattr(
args, "decoder_output_dim", args.decoder_embed_dim
)
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)
# --- special arguments ---
args.sg_length_pred = getattr(args, "sg_length_pred", False)
args.pred_length_offset = getattr(args, "pred_length_offset", False)
args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
args.ngram_predictor = getattr(args, "ngram_predictor", 1)
args.src_embedding_copy = getattr(args, "src_embedding_copy", False)
args.train_step = getattr(args, "train_step", 4)
args.dae_ratio = getattr(args, "dae_ratio", 0.5)
args.stochastic_approx = getattr(args, "stochastic_approx", False)
@register_model_architecture(
"iterative_nonautoregressive_transformer",
"iterative_nonautoregressive_transformer_wmt_en_de",
)
def iter_nat_wmt_en_de(args):
inat_base_architecture(args)
|