File size: 8,647 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
from fairseq.models import register_model, register_model_architecture
from fairseq.models.nat import NATransformerModel


def _sequential_poisoning(s, V, beta=0.33, bos=2, eos=3, pad=1):
    # s: input batch
    # V: vocabulary size
    rand_words = torch.randint(low=4, high=V, size=s.size(), device=s.device)
    choices = torch.rand(size=s.size(), device=s.device)
    choices.masked_fill_((s == pad) | (s == bos) | (s == eos), 1)

    replace = choices < beta / 3
    repeat = (choices >= beta / 3) & (choices < beta * 2 / 3)
    swap = (choices >= beta * 2 / 3) & (choices < beta)
    safe = choices >= beta

    for i in range(s.size(1) - 1):
        rand_word = rand_words[:, i]
        next_word = s[:, i + 1]
        self_word = s[:, i]

        replace_i = replace[:, i]
        swap_i = swap[:, i] & (next_word != 3)
        repeat_i = repeat[:, i] & (next_word != 3)
        safe_i = safe[:, i] | ((next_word == 3) & (~replace_i))

        s[:, i] = (
            self_word * (safe_i | repeat_i).long()
            + next_word * swap_i.long()
            + rand_word * replace_i.long()
        )
        s[:, i + 1] = (
            next_word * (safe_i | replace_i).long()
            + self_word * (swap_i | repeat_i).long()
        )
    return s


def gumbel_noise(input, TINY=1e-8):
    return (
        input.new_zeros(*input.size())
        .uniform_()
        .add_(TINY)
        .log_()
        .neg_()
        .add_(TINY)
        .log_()
        .neg_()
    )


@register_model("iterative_nonautoregressive_transformer")
class IterNATransformerModel(NATransformerModel):
    @staticmethod
    def add_args(parser):
        NATransformerModel.add_args(parser)
        parser.add_argument(
            "--train-step",
            type=int,
            help="number of refinement iterations during training",
        )
        parser.add_argument(
            "--dae-ratio",
            type=float,
            help="the probability of switching to the denoising auto-encoder loss",
        )
        parser.add_argument(
            "--stochastic-approx",
            action="store_true",
            help="sampling from the decoder as the inputs for next iteration",
        )

    @classmethod
    def build_model(cls, args, task):
        model = super().build_model(args, task)
        model.train_step = getattr(args, "train_step", 4)
        model.dae_ratio = getattr(args, "dae_ratio", 0.5)
        model.stochastic_approx = getattr(args, "stochastic_approx", False)
        return model

    def forward(
        self, src_tokens, src_lengths, prev_output_tokens, tgt_tokens, **kwargs
    ):

        B, T = prev_output_tokens.size()

        # encoding
        encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)

        # length prediction
        length_out = self.decoder.forward_length(
            normalize=False, encoder_out=encoder_out
        )
        length_tgt = self.decoder.forward_length_prediction(
            length_out, encoder_out, tgt_tokens
        )

        # decoding
        word_ins_outs, word_ins_tgts, word_ins_masks = [], [], []
        for t in range(self.train_step):
            word_ins_out = self.decoder(
                normalize=False,
                prev_output_tokens=prev_output_tokens,
                encoder_out=encoder_out,
                step=t,
            )
            word_ins_tgt = tgt_tokens
            word_ins_mask = word_ins_tgt.ne(self.pad)

            word_ins_outs.append(word_ins_out)
            word_ins_tgts.append(word_ins_tgt)
            word_ins_masks.append(word_ins_mask)

            if t < (self.train_step - 1):
                # prediction for next iteration
                if self.stochastic_approx:
                    word_ins_prediction = (
                        word_ins_out + gumbel_noise(word_ins_out)
                    ).max(-1)[1]
                else:
                    word_ins_prediction = word_ins_out.max(-1)[1]

                prev_output_tokens = prev_output_tokens.masked_scatter(
                    word_ins_mask, word_ins_prediction[word_ins_mask]
                )

                if self.dae_ratio > 0:
                    # we do not perform denoising for the first iteration
                    corrputed = (
                        torch.rand(size=(B,), device=prev_output_tokens.device)
                        < self.dae_ratio
                    )
                    corrputed_tokens = _sequential_poisoning(
                        tgt_tokens[corrputed],
                        len(self.tgt_dict),
                        0.33,
                        self.bos,
                        self.eos,
                        self.pad,
                    )
                    prev_output_tokens[corrputed] = corrputed_tokens

        # concat everything
        word_ins_out = torch.cat(word_ins_outs, 0)
        word_ins_tgt = torch.cat(word_ins_tgts, 0)
        word_ins_mask = torch.cat(word_ins_masks, 0)

        return {
            "word_ins": {
                "out": word_ins_out,
                "tgt": word_ins_tgt,
                "mask": word_ins_mask,
                "ls": self.args.label_smoothing,
                "nll_loss": True,
            },
            "length": {
                "out": length_out,
                "tgt": length_tgt,
                "factor": self.decoder.length_loss_factor,
            },
        }


@register_model_architecture(
    "iterative_nonautoregressive_transformer", "iterative_nonautoregressive_transformer"
)
def inat_base_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.activation_dropout = getattr(args, "activation_dropout", 0.0)
    args.activation_fn = getattr(args, "activation_fn", "relu")
    args.dropout = getattr(args, "dropout", 0.1)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", False
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", False)
    args.no_token_positional_embeddings = getattr(
        args, "no_token_positional_embeddings", False
    )
    args.adaptive_input = getattr(args, "adaptive_input", False)
    args.apply_bert_init = getattr(args, "apply_bert_init", False)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    # --- special arguments ---
    args.sg_length_pred = getattr(args, "sg_length_pred", False)
    args.pred_length_offset = getattr(args, "pred_length_offset", False)
    args.length_loss_factor = getattr(args, "length_loss_factor", 0.1)
    args.ngram_predictor = getattr(args, "ngram_predictor", 1)
    args.src_embedding_copy = getattr(args, "src_embedding_copy", False)

    args.train_step = getattr(args, "train_step", 4)
    args.dae_ratio = getattr(args, "dae_ratio", 0.5)
    args.stochastic_approx = getattr(args, "stochastic_approx", False)


@register_model_architecture(
    "iterative_nonautoregressive_transformer",
    "iterative_nonautoregressive_transformer_wmt_en_de",
)
def iter_nat_wmt_en_de(args):
    inat_base_architecture(args)