File size: 25,731 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import contextlib
import copy
import importlib
import logging
import os
import sys
import warnings
from itertools import accumulate
from typing import Callable, Dict, List, Optional
import torch
import torch.nn.functional as F
from fairseq.modules.multihead_attention import MultiheadAttention
from torch import Tensor
try:
from amp_C import multi_tensor_l2norm
multi_tensor_l2norm_available = True
except ImportError:
multi_tensor_l2norm_available = False
try:
import torch_xla.core.xla_model as xm
except ImportError:
xm = None
logger = logging.getLogger(__name__)
MANIFOLD_PATH_SEP = "|"
class FileContentsAction(argparse.Action):
def __init__(self, option_strings, dest, nargs=None, **kwargs):
if nargs is not None:
raise ValueError("nargs not allowed")
super(FileContentsAction, self).__init__(option_strings, dest, **kwargs)
def __call__(self, parser, namespace, values, option_string=None):
from fairseq.file_io import PathManager
if PathManager.isfile(values):
with PathManager.open(values) as f:
argument = f.read().strip()
else:
argument = values
setattr(namespace, self.dest, argument)
def split_paths(paths: str, separator=os.pathsep) -> List[str]:
return (
paths.split(separator) if "://" not in paths else paths.split(MANIFOLD_PATH_SEP)
)
def load_ensemble_for_inference(filenames, task, model_arg_overrides=None):
from fairseq import checkpoint_utils
deprecation_warning(
"utils.load_ensemble_for_inference is deprecated. "
"Please use checkpoint_utils.load_model_ensemble instead."
)
return checkpoint_utils.load_model_ensemble(
filenames, arg_overrides=model_arg_overrides, task=task
)
def apply_to_sample(f, sample):
if hasattr(sample, "__len__") and len(sample) == 0:
return {}
def _apply(x):
if torch.is_tensor(x):
return f(x)
elif isinstance(x, dict):
return {key: _apply(value) for key, value in x.items()}
elif isinstance(x, list):
return [_apply(x) for x in x]
elif isinstance(x, tuple):
return tuple(_apply(x) for x in x)
elif isinstance(x, set):
return {_apply(x) for x in x}
else:
return x
return _apply(sample)
def move_to_cuda(sample, device=None):
device = device or torch.cuda.current_device()
def _move_to_cuda(tensor):
# non_blocking is ignored if tensor is not pinned, so we can always set
# to True (see github.com/PyTorchLightning/pytorch-lightning/issues/620)
return tensor.to(device=device, non_blocking=True)
return apply_to_sample(_move_to_cuda, sample)
def move_to_cpu(sample):
def _move_to_cpu(tensor):
# PyTorch has poor support for half tensors (float16) on CPU.
# Move any such tensors to float32.
if tensor.dtype in {torch.bfloat16, torch.float16}:
tensor = tensor.to(dtype=torch.float32)
return tensor.cpu()
return apply_to_sample(_move_to_cpu, sample)
def move_to_tpu(sample):
import torch_xla.core.xla_model as xm
device = xm.xla_device()
def _move_to_tpu(tensor):
return tensor.to(device)
return apply_to_sample(_move_to_tpu, sample)
def get_incremental_state(
module: MultiheadAttention,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
) -> Optional[Dict[str, Optional[Tensor]]]:
"""Helper for getting incremental state for an nn.Module."""
return module.get_incremental_state(incremental_state, key)
def set_incremental_state(
module: MultiheadAttention,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]],
key: str,
value: Dict[str, Optional[Tensor]],
) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]:
"""Helper for setting incremental state for an nn.Module."""
if incremental_state is not None:
result = module.set_incremental_state(incremental_state, key, value)
if result is not None:
incremental_state = result
return incremental_state
def load_align_dict(replace_unk):
if replace_unk is None:
align_dict = None
elif isinstance(replace_unk, str) and len(replace_unk) > 0:
# Load alignment dictionary for unknown word replacement if it was passed as an argument.
align_dict = {}
with open(replace_unk, "r") as f:
for line in f:
cols = line.split()
align_dict[cols[0]] = cols[1]
else:
# No alignment dictionary provided but we still want to perform unknown word replacement by copying the
# original source word.
align_dict = {}
return align_dict
def print_embed_overlap(embed_dict, vocab_dict):
embed_keys = set(embed_dict.keys())
vocab_keys = set(vocab_dict.symbols)
overlap = len(embed_keys & vocab_keys)
logger.info("found {}/{} types in embedding file".format(overlap, len(vocab_dict)))
def parse_embedding(embed_path):
"""Parse embedding text file into a dictionary of word and embedding tensors.
The first line can have vocabulary size and dimension. The following lines
should contain word and embedding separated by spaces.
Example:
2 5
the -0.0230 -0.0264 0.0287 0.0171 0.1403
at -0.0395 -0.1286 0.0275 0.0254 -0.0932
"""
embed_dict = {}
with open(embed_path) as f_embed:
next(f_embed) # skip header
for line in f_embed:
pieces = line.rstrip().split(" ")
embed_dict[pieces[0]] = torch.Tensor(
[float(weight) for weight in pieces[1:]]
)
return embed_dict
def load_embedding(embed_dict, vocab, embedding):
for idx in range(len(vocab)):
token = vocab[idx]
if token in embed_dict:
embedding.weight.data[idx] = embed_dict[token]
return embedding
def replace_unk(hypo_str, src_str, alignment, align_dict, unk):
from fairseq import tokenizer
# Tokens are strings here
hypo_tokens = tokenizer.tokenize_line(hypo_str)
# TODO: Very rare cases where the replacement is '<eos>' should be handled gracefully
src_tokens = tokenizer.tokenize_line(src_str) + ["<eos>"]
for i, ht in enumerate(hypo_tokens):
if ht == unk:
src_token = src_tokens[alignment[i]]
# Either take the corresponding value in the aligned dictionary or just copy the original value.
hypo_tokens[i] = align_dict.get(src_token, src_token)
return " ".join(hypo_tokens)
def post_process_prediction(
hypo_tokens,
src_str,
alignment,
align_dict,
tgt_dict,
remove_bpe=None,
extra_symbols_to_ignore=None,
):
hypo_str = tgt_dict.string(
hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore
)
if align_dict is not None:
hypo_str = replace_unk(
hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string()
)
if align_dict is not None or remove_bpe is not None:
# Convert back to tokens for evaluating with unk replacement or without BPE
# Note that the dictionary can be modified inside the method.
hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True)
return hypo_tokens, hypo_str, alignment
def make_positions(tensor, padding_idx: int, onnx_trace: bool = False):
"""Replace non-padding symbols with their position numbers.
Position numbers begin at padding_idx+1. Padding symbols are ignored.
"""
# The series of casts and type-conversions here are carefully
# balanced to both work with ONNX export and XLA. In particular XLA
# prefers ints, cumsum defaults to output longs, and ONNX doesn't know
# how to handle the dtype kwarg in cumsum.
mask = tensor.ne(padding_idx).int()
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
def strip_pad(tensor, pad):
return tensor[tensor.ne(pad)]
def buffered_arange(max):
if not hasattr(buffered_arange, "buf"):
buffered_arange.buf = torch.LongTensor()
if max > buffered_arange.buf.numel():
buffered_arange.buf.resize_(max)
torch.arange(max, out=buffered_arange.buf)
return buffered_arange.buf[:max]
def convert_padding_direction(
src_tokens, padding_idx, right_to_left: bool = False, left_to_right: bool = False
):
assert right_to_left ^ left_to_right
pad_mask = src_tokens.eq(padding_idx)
if not pad_mask.any():
# no padding, return early
return src_tokens
if left_to_right and not pad_mask[:, 0].any():
# already right padded
return src_tokens
if right_to_left and not pad_mask[:, -1].any():
# already left padded
return src_tokens
max_len = src_tokens.size(1)
buffered = torch.empty(0).long()
if max_len > 0:
torch.arange(max_len, out=buffered)
range = buffered.type_as(src_tokens).expand_as(src_tokens)
num_pads = pad_mask.long().sum(dim=1, keepdim=True)
if right_to_left:
index = torch.remainder(range - num_pads, max_len)
else:
index = torch.remainder(range + num_pads, max_len)
return src_tokens.gather(1, index)
def item(tensor):
# tpu-comment: making this a no-op for xla devices.
if torch.is_tensor(tensor) and tensor.device.type == "xla":
return tensor.detach()
if hasattr(tensor, "item"):
return tensor.item()
if hasattr(tensor, "__getitem__"):
return tensor[0]
return tensor
def multi_tensor_total_norm(grads, chunk_size=2048 * 32) -> torch.Tensor:
per_device_grads = {}
norms = []
for grad in grads:
device = grad.device
cur_device_grads = per_device_grads.get(device)
if cur_device_grads is None:
cur_device_grads = []
per_device_grads[device] = cur_device_grads
cur_device_grads.append(grad)
for device in per_device_grads.keys():
cur_device_grads = per_device_grads[device]
if device.type == "cuda":
# TODO(msb) return has_inf
has_inf = torch.zeros((1, 1), dtype=torch.int, device=device)
with torch.cuda.device(device):
norm = multi_tensor_l2norm(
chunk_size, has_inf, [cur_device_grads], False
)
norms.append(norm[0].to(torch.cuda.current_device()))
else:
norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads]
total_norm = torch.norm(torch.stack(norms))
return total_norm
@torch.no_grad()
def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor:
def grad_exists(p):
return p is not None and getattr(p, "grad", None) is not None
if isinstance(params, torch.Tensor):
params = [params]
params = list(params)
grads = [
p.grad.detach() for p in params if grad_exists(p) and not hasattr(p, "expert")
]
expert_grads = [
p.grad.detach() for p in params if grad_exists(p) and hasattr(p, "expert")
]
if len(grads) == 0:
if len(params) > 0:
return params[0].new_tensor(0.0)
else:
return torch.tensor(0.0)
if len(grads) == 1:
total_norm = torch.norm(grads[0], p=2, dtype=torch.float32)
else:
if multi_tensor_l2norm_available:
total_norm = multi_tensor_total_norm(grads)
else:
if torch.cuda.is_available():
warnings.warn(
"amp_C fused kernels unavailable, disabling multi_tensor_l2norm; "
"you may get better performance by installing NVIDIA's apex library"
)
device = torch.cuda.current_device()
elif grads[0].device.type == "xla":
device = grads[0].device
else:
device = torch.device("cpu")
total_norm = torch.norm(
torch.stack(
[torch.norm(g, p=2, dtype=torch.float32).to(device) for g in grads]
)
)
if aggregate_norm_fn is not None:
total_norm = aggregate_norm_fn(total_norm)
if max_norm > 0:
max_norm = float(max_norm)
clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1)
for g in grads + expert_grads:
g.mul_(clip_coef)
return total_norm
def fill_with_neg_inf(t):
"""FP16-compatible function that fills a tensor with -inf."""
return t.float().fill_(float("-inf")).type_as(t)
def _match_types(arg1, arg2):
"""Convert the numerical argument to the same type as the other argument"""
def upgrade(arg_number, arg_structure):
if isinstance(arg_structure, tuple):
return tuple([arg_number] * len(arg_structure))
elif isinstance(arg_structure, dict):
arg = copy.deepcopy(arg_structure)
for k in arg:
arg[k] = upgrade(arg_number, arg_structure[k])
return arg
else:
return arg_number
if isinstance(arg1, float) or isinstance(arg1, int):
return upgrade(arg1, arg2), arg2
elif isinstance(arg2, float) or isinstance(arg2, int):
return arg1, upgrade(arg2, arg1)
return arg1, arg2
def resolve_max_positions(*args):
"""Resolve max position constraints from multiple sources."""
def map_value_update(d1, d2):
updated_value = copy.deepcopy(d1)
for key in d2:
if key not in updated_value:
updated_value[key] = d2[key]
else:
updated_value[key] = min(d1[key], d2[key])
return updated_value
def nullsafe_min(l):
minim = None
for item in l:
if minim is None:
minim = item
elif item is not None and item < minim:
minim = item
return minim
max_positions = None
for arg in args:
if max_positions is None:
max_positions = arg
elif arg is not None:
max_positions, arg = _match_types(max_positions, arg)
if isinstance(arg, float) or isinstance(arg, int):
max_positions = min(max_positions, arg)
elif isinstance(arg, dict):
max_positions = map_value_update(max_positions, arg)
else:
max_positions = tuple(map(nullsafe_min, zip(max_positions, arg)))
return max_positions
def import_user_module(args):
module_path = getattr(args, "user_dir", None)
if module_path is not None:
module_path = os.path.abspath(args.user_dir)
if not os.path.exists(module_path) and not os.path.isfile(
os.path.dirname(module_path)
):
fairseq_rel_path = os.path.join(os.path.dirname(__file__), args.user_dir)
if os.path.exists(fairseq_rel_path):
module_path = fairseq_rel_path
else:
fairseq_rel_path = os.path.join(
os.path.dirname(__file__), "..", args.user_dir
)
if os.path.exists(fairseq_rel_path):
module_path = fairseq_rel_path
else:
raise FileNotFoundError(module_path)
# ensure that user modules are only imported once
import_user_module.memo = getattr(import_user_module, "memo", set())
if module_path not in import_user_module.memo:
import_user_module.memo.add(module_path)
module_parent, module_name = os.path.split(module_path)
if module_name not in sys.modules:
sys.path.insert(0, module_parent)
importlib.import_module(module_name)
tasks_path = os.path.join(module_path, "tasks")
if os.path.exists(tasks_path):
from fairseq.tasks import import_tasks
import_tasks(tasks_path, f"{module_name}.tasks")
models_path = os.path.join(module_path, "models")
if os.path.exists(models_path):
from fairseq.models import import_models
import_models(models_path, f"{module_name}.models")
else:
raise ImportError(
"Failed to import --user-dir={} because the corresponding module name "
"({}) is not globally unique. Please rename the directory to "
"something unique and try again.".format(module_path, module_name)
)
def softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.softmax(x.float(), dim=dim)
else:
return F.softmax(x, dim=dim, dtype=torch.float32)
def log_softmax(x, dim: int, onnx_trace: bool = False):
if onnx_trace:
return F.log_softmax(x.float(), dim=dim)
else:
return F.log_softmax(x, dim=dim, dtype=torch.float32)
def get_perplexity(loss, round=2, base=2):
from fairseq.logging.meters import safe_round
if loss is None:
return 0.0
try:
return safe_round(base ** loss, round)
except OverflowError:
return float("inf")
def deprecation_warning(message, stacklevel=3):
# don't use DeprecationWarning, since it's ignored by default
warnings.warn(message, stacklevel=stacklevel)
def get_activation_fn(activation: str) -> Callable:
"""Returns the activation function corresponding to `activation`"""
from fairseq.modules import gelu, gelu_accurate
if activation == "relu":
return F.relu
elif activation == "gelu":
return gelu
elif activation == "gelu_fast":
deprecation_warning(
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
)
return gelu_accurate
elif activation == "gelu_accurate":
return gelu_accurate
elif activation == "tanh":
return torch.tanh
elif activation == "linear":
return lambda x: x
else:
raise RuntimeError("--activation-fn {} not supported".format(activation))
def get_available_activation_fns() -> List:
return [
"relu",
"gelu",
"gelu_fast", # deprecated
"gelu_accurate",
"tanh",
"linear",
]
@contextlib.contextmanager
def model_eval(model):
is_training = model.training
model.eval()
yield
model.train(is_training)
def has_parameters(module):
try:
next(module.parameters())
return True
except StopIteration:
return False
def get_rng_state():
state = {"torch_rng_state": torch.get_rng_state()}
if xm is not None:
state["xla_rng_state"] = xm.get_rng_state()
if torch.cuda.is_available():
state["cuda_rng_state"] = torch.cuda.get_rng_state()
return state
def set_rng_state(state):
torch.set_rng_state(state["torch_rng_state"])
if xm is not None:
xm.set_rng_state(state["xla_rng_state"])
if torch.cuda.is_available():
torch.cuda.set_rng_state(state["cuda_rng_state"])
class set_torch_seed(object):
def __init__(self, seed):
assert isinstance(seed, int)
self.rng_state = get_rng_state()
torch.manual_seed(seed)
if xm is not None:
xm.set_rng_state(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
def __enter__(self):
return self
def __exit__(self, *exc):
set_rng_state(self.rng_state)
def parse_alignment(line):
"""
Parses a single line from the alingment file.
Args:
line (str): String containing the alignment of the format:
<src_idx_1>-<tgt_idx_1> <src_idx_2>-<tgt_idx_2> ..
<src_idx_m>-<tgt_idx_m>. All indices are 0 indexed.
Returns:
torch.IntTensor: packed alignments of shape (2 * m).
"""
alignments = line.strip().split()
parsed_alignment = torch.IntTensor(2 * len(alignments))
for idx, alignment in enumerate(alignments):
src_idx, tgt_idx = alignment.split("-")
parsed_alignment[2 * idx] = int(src_idx)
parsed_alignment[2 * idx + 1] = int(tgt_idx)
return parsed_alignment
def get_token_to_word_mapping(tokens, exclude_list):
n = len(tokens)
word_start = [int(token not in exclude_list) for token in tokens]
word_idx = list(accumulate(word_start))
token_to_word = {i: word_idx[i] for i in range(n)}
return token_to_word
def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos):
tgt_valid = (
((tgt_sent != pad) & (tgt_sent != eos)).nonzero(as_tuple=False).squeeze(dim=-1)
)
src_invalid = (
((src_sent == pad) | (src_sent == eos)).nonzero(as_tuple=False).squeeze(dim=-1)
)
src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad])
tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad])
alignment = []
if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent):
attn_valid = attn[tgt_valid]
attn_valid[:, src_invalid] = float("-inf")
_, src_indices = attn_valid.max(dim=1)
for tgt_idx, src_idx in zip(tgt_valid, src_indices):
alignment.append(
(
src_token_to_word[src_idx.item()] - 1,
tgt_token_to_word[tgt_idx.item()] - 1,
)
)
return alignment
def extract_soft_alignment(attn, src_sent, tgt_sent, pad, eos):
tgt_valid = ((tgt_sent != pad)).nonzero(as_tuple=False)
src_valid = ((src_sent != pad)).nonzero(as_tuple=False).squeeze(dim=-1)
alignment = []
if len(tgt_valid) != 0 and len(src_valid) != 0:
attn_valid = attn[tgt_valid, src_valid]
alignment = [
["{:.6f}".format(p) for p in src_probs.tolist()] for src_probs in attn_valid
]
return alignment
def new_arange(x, *size):
"""
Return a Tensor of `size` filled with a range function on the device of x.
If size is empty, using the size of the variable x.
"""
if len(size) == 0:
size = x.size()
return torch.arange(size[-1], device=x.device).expand(*size).contiguous()
def get_tpu_device():
return xm.xla_device()
def tpu_data_loader(itr):
import torch_xla.core.xla_model as xm
import torch_xla.distributed.parallel_loader as pl
from fairseq.data import iterators
xm.rendezvous("tpu_data_loader") # wait for all workers
xm.mark_step()
device = xm.xla_device()
return iterators.CountingIterator(
pl.ParallelLoader(itr, [device]).per_device_loader(device),
start=getattr(itr, "n", 0),
total=len(itr),
)
def is_xla_tensor(tensor):
return torch.is_tensor(tensor) and tensor.device.type == "xla"
def index_put(tensor, indices, value):
if is_xla_tensor(tensor):
for _ in range(indices.dim(), tensor.dim()):
indices = indices.unsqueeze(-1)
if indices.size(-1) < tensor.size(-1):
indices = indices.expand_as(tensor)
tensor = torch.mul(tensor, ~indices) + torch.mul(value, indices)
else:
tensor[indices] = value
return tensor
def xla_device_to_cpu(dat):
import torch_xla.core.xla_model as xm
return xm._maybe_convert_to_cpu(dat)
class CudaEnvironment(object):
def __init__(self):
cur_device = torch.cuda.current_device()
prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device))
self.name = prop.name
self.major = prop.major
self.minor = prop.minor
self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024
@staticmethod
def pretty_print_cuda_env_list(cuda_env_list):
"""
Given a list of CudaEnviorments, pretty print them
"""
num_workers = len(cuda_env_list)
center = "CUDA enviroments for all {} workers".format(num_workers)
banner_len = 40 - len(center) // 2
first_line = "*" * banner_len + center + "*" * banner_len
logger.info(first_line)
for r, env in enumerate(cuda_env_list):
logger.info(
"rank {:3d}: ".format(r)
+ "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor)
+ "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB)
+ "name = {:40s}".format(env.name)
)
logger.info(first_line)
def csv_str_list(x):
return x.split(",")
def eval_str_list(x, type=float):
if x is None:
return None
if isinstance(x, str):
x = eval(x)
try:
return list(map(type, x))
except TypeError:
return [type(x)]
def eval_str_dict(x, type=dict):
if x is None:
return None
if isinstance(x, str):
x = eval(x)
return x
def eval_bool(x, default=False):
if x is None:
return default
try:
return bool(eval(x))
except TypeError:
return default
def reset_logging():
root = logging.getLogger()
for handler in root.handlers:
root.removeHandler(handler)
root.setLevel(os.environ.get("LOGLEVEL", "INFO").upper())
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
logging.Formatter(
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)
)
root.addHandler(handler)
|