File size: 1,409 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
LayerDrop as described in https://arxiv.org/abs/1909.11556.
"""

import torch
import torch.nn as nn


class LayerDropModuleList(nn.ModuleList):
    """
    A LayerDrop implementation based on :class:`torch.nn.ModuleList`.

    We refresh the choice of which layers to drop every time we iterate
    over the LayerDropModuleList instance. During evaluation we always
    iterate over all layers.

    Usage::

        layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
        for layer in layers:  # this might iterate over layers 1 and 3
            x = layer(x)
        for layer in layers:  # this might iterate over all layers
            x = layer(x)
        for layer in layers:  # this might not iterate over any layers
            x = layer(x)

    Args:
        p (float): probability of dropping out each layer
        modules (iterable, optional): an iterable of modules to add
    """

    def __init__(self, p, modules=None):
        super().__init__(modules)
        self.p = p

    def __iter__(self):
        dropout_probs = torch.empty(len(self)).uniform_()
        for i, m in enumerate(super().__iter__()):
            if not self.training or (dropout_probs[i] > self.p):
                yield m