freddyaboulton HF staff commited on
Commit
972bb24
·
verified ·
1 Parent(s): 230b0f4

Commit 1: Add 50 file(s)

Browse files
demos/cancel_events/run.ipynb CHANGED
@@ -1 +1 @@
1
- {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\"\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(10)\n", " return 42\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Change\"\n", " )\n", " cancel_on_submit = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Submit\"\n", " )\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(\n", " sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True\n", " )\n", " with gr.Column():\n", " video = gr.Video(\n", " sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True\n", " )\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(\n", " fn=long_prediction, inputs=[textbox], outputs=prediction\n", " )\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(\n", " lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event]\n", " )\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
 
1
+ {"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: cancel_events"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio "]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["import time\n", "import gradio as gr\n", "import atexit\n", "import pathlib\n", "\n", "log_file = pathlib.Path(__file__).parent / \"cancel_events_output_log.txt\"\n", "\n", "def fake_diffusion(steps):\n", " log_file.write_text(\"\")\n", " for i in range(steps):\n", " print(f\"Current step: {i}\")\n", " with log_file.open(\"a\") as f:\n", " f.write(f\"Current step: {i}\\n\")\n", " time.sleep(0.2)\n", " yield str(i)\n", "\n", "def long_prediction(*args, **kwargs):\n", " time.sleep(4)\n", " return 42, 42\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Row():\n", " with gr.Column():\n", " n = gr.Slider(1, 10, value=9, step=1, label=\"Number Steps\")\n", " run = gr.Button(value=\"Start Iterating\")\n", " output = gr.Textbox(label=\"Iterative Output\")\n", " stop = gr.Button(value=\"Stop Iterating\")\n", " with gr.Column():\n", " textbox = gr.Textbox(label=\"Prompt\")\n", " loading_box = gr.Textbox(label=\"Loading indicator for expensive calculation\")\n", " loading_box2 = gr.Textbox(label=\"Loading indicator for expensive calculation\")\n", " prediction = gr.Number(label=\"Expensive Calculation\")\n", " prediction2 = gr.Number(label=\"Expensive Calculation\")\n", " run_pred = gr.Button(value=\"Run Expensive Calculation\")\n", " with gr.Column():\n", " cancel_on_change = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Change\"\n", " )\n", " cancel_on_submit = gr.Textbox(\n", " label=\"Cancel Iteration and Expensive Calculation on Submit\"\n", " )\n", " echo = gr.Textbox(label=\"Echo\")\n", " with gr.Row():\n", " with gr.Column():\n", " image = gr.Image(\n", " sources=[\"webcam\"], label=\"Cancel on clear\", interactive=True\n", " )\n", " with gr.Column():\n", " video = gr.Video(\n", " sources=[\"webcam\"], label=\"Cancel on start recording\", interactive=True\n", " )\n", "\n", " click_event = run.click(fake_diffusion, n, output)\n", " stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])\n", " pred_event = run_pred.click(\n", " fn=long_prediction, inputs=[textbox], outputs=[prediction, prediction2], show_progress_on=[loading_box, loading_box2]\n", " )\n", "\n", " cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])\n", " cancel_on_submit.submit(\n", " lambda s: s, cancel_on_submit, echo, cancels=[click_event, pred_event]\n", " )\n", " image.clear(None, None, None, cancels=[click_event, pred_event])\n", " video.start_recording(None, None, None, cancels=[click_event, pred_event])\n", "\n", " demo.queue(max_size=20)\n", " atexit.register(lambda: log_file.unlink())\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
demos/cancel_events/run.py CHANGED
@@ -15,8 +15,8 @@ def fake_diffusion(steps):
15
  yield str(i)
16
 
17
  def long_prediction(*args, **kwargs):
18
- time.sleep(10)
19
- return 42
20
 
21
  with gr.Blocks() as demo:
22
  with gr.Row():
@@ -27,7 +27,10 @@ with gr.Blocks() as demo:
27
  stop = gr.Button(value="Stop Iterating")
28
  with gr.Column():
29
  textbox = gr.Textbox(label="Prompt")
 
 
30
  prediction = gr.Number(label="Expensive Calculation")
 
31
  run_pred = gr.Button(value="Run Expensive Calculation")
32
  with gr.Column():
33
  cancel_on_change = gr.Textbox(
@@ -50,7 +53,7 @@ with gr.Blocks() as demo:
50
  click_event = run.click(fake_diffusion, n, output)
51
  stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
52
  pred_event = run_pred.click(
53
- fn=long_prediction, inputs=[textbox], outputs=prediction
54
  )
55
 
56
  cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])
 
15
  yield str(i)
16
 
17
  def long_prediction(*args, **kwargs):
18
+ time.sleep(4)
19
+ return 42, 42
20
 
21
  with gr.Blocks() as demo:
22
  with gr.Row():
 
27
  stop = gr.Button(value="Stop Iterating")
28
  with gr.Column():
29
  textbox = gr.Textbox(label="Prompt")
30
+ loading_box = gr.Textbox(label="Loading indicator for expensive calculation")
31
+ loading_box2 = gr.Textbox(label="Loading indicator for expensive calculation")
32
  prediction = gr.Number(label="Expensive Calculation")
33
+ prediction2 = gr.Number(label="Expensive Calculation")
34
  run_pred = gr.Button(value="Run Expensive Calculation")
35
  with gr.Column():
36
  cancel_on_change = gr.Textbox(
 
53
  click_event = run.click(fake_diffusion, n, output)
54
  stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
55
  pred_event = run_pred.click(
56
+ fn=long_prediction, inputs=[textbox], outputs=[prediction, prediction2], show_progress_on=[loading_box, loading_box2]
57
  )
58
 
59
  cancel_on_change.change(None, None, None, cancels=[click_event, pred_event])