import os import numpy as np from PIL import Image import face_recognition from scipy.spatial import distance import gradio as gr class ImageToGroup(object): def __init__(self, filename, path): self.filename = filename self.path = path self.embeddings = self.extract_embeddings() def extract_embeddings(self): try: img = Image.open(self.path) img = img.convert("RGB") # Convert image to RGB img = img.resize((800, 800)) # Resize the image to improve performance img = np.array(img) face_locations = face_recognition.face_locations(img) if len(face_locations) == 0: return [] # No face found in the image # Generate multiple face encodings with jitter face_encodings = [face_recognition.face_encodings(img, [face_location], num_jitters=10)[0] for face_location in face_locations] return face_encodings except Exception as e: print(f"Error extracting embeddings from {self.path}: {e}") return [] def are_similar(self, other_embeddings, threshold=0.6): # Calculate the Euclidean distance between two embeddings for other_embedding in other_embeddings: for _ in self.embeddings: dist = distance.euclidean(_, other_embedding) if dist < threshold: return True return False def group_images(input_files): images_to_group = [ImageToGroup(os.path.basename(file), file) for file in input_files] # Group images into clusters based on face embeddings grouped_images = {} for image in images_to_group: if not image.embeddings: continue # Skip images with no faces for group_images in grouped_images.values(): if image.are_similar(group_images[0].embeddings): # Compare embeddings using are_similar method group_images.append(image) break else: # Use the first embedding of the current image as the key for the new group grouped_images[tuple(image.embeddings[0])] = [image] # Convert grouped images to PIL Image objects group_images_pil = [] for i, (_, group_images) in enumerate(grouped_images.items()): for image in group_images: pil_image = Image.open(image.path) group_images_pil.append((pil_image, f"Group {i+1}")) return group_images_pil # Interface for Gradio input_directory = gr.File(label="Input Directory",file_count="multiple") gallery = gr.Gallery(label="Grouped Images") gr.Interface( fn=group_images, inputs=[input_directory], outputs=gallery ).launch(share=True)