import gradio as gr import logging import threading import time from generator.compute_metrics import get_attributes_text from generator.generate_metrics import generate_metrics, retrieve_and_generate_response from config import AppConfig, ConfigConstants from generator.initialize_llm import initialize_generation_llm, initialize_validation_llm from generator.document_utils import get_logs, initialize_logging def launch_gradio(config : AppConfig): """ Launch the Gradio app with pre-initialized objects. """ initialize_logging() def update_logs_periodically(): while True: time.sleep(2) # Wait for 2 seconds yield get_logs() def answer_question(query, state): try: # Generate response using the passed objects response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query) # Update state with the response and source documents state["query"] = query state["response"] = response state["source_docs"] = source_docs response_text = f"Response: {response}\n\n" return response_text, state except Exception as e: logging.error(f"Error processing query: {e}") return f"An error occurred: {e}", state def compute_metrics(state): try: logging.info(f"Computing metrics") # Retrieve response and source documents from state response = state.get("response", "") source_docs = state.get("source_docs", {}) query = state.get("query", "") # Generate metrics using the passed objects attributes, metrics = generate_metrics(config.val_llm, response, source_docs, query, 1) attributes_text = get_attributes_text(attributes) metrics_text = "Metrics:\n" for key, value in metrics.items(): if key != 'response': metrics_text += f"{key}: {value}\n" return attributes_text, metrics_text except Exception as e: logging.error(f"Error computing metrics: {e}") return f"An error occurred: {e}", "" def reinitialize_llm(model_type, model_name): """Reinitialize the specified LLM (generation or validation) and return updated model info.""" if model_name.strip(): # Only update if input is not empty if model_type == "generation": config.gen_llm = initialize_generation_llm(model_name) elif model_type == "validation": config.val_llm = initialize_validation_llm(model_name) return get_updated_model_info() def get_updated_model_info(): """Generate and return the updated model information string.""" return ( f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n" f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n" f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n" ) # Wrappers for event listeners def reinitialize_gen_llm(gen_llm_name): return reinitialize_llm("generation", gen_llm_name) def reinitialize_val_llm(val_llm_name): return reinitialize_llm("validation", val_llm_name) # Define Gradio Blocks layout with gr.Blocks() as interface: interface.title = "Real Time RAG Pipeline Q&A" gr.Markdown("# Real Time RAG Pipeline Q&A") # Heading # Textbox for new generation LLM name with gr.Row(): new_gen_llm_input = gr.Dropdown( label="Generation Model", choices=ConfigConstants.GENERATION_MODELS, # Directly use the list value=ConfigConstants.GENERATION_MODELS[0] if ConfigConstants.GENERATION_MODELS else None, # First value dynamically interactive=True ) new_val_llm_input = gr.Dropdown( label="Validation Model", choices=ConfigConstants.VALIDATION_MODELS, # Directly use the list value=ConfigConstants.VALIDATION_MODELS[0] if ConfigConstants.VALIDATION_MODELS else None, # First value dynamically interactive=True ) model_info_display = gr.Textbox( value=get_updated_model_info(), # Use the helper function label="System Information", interactive=False # Read-only textbox ) # State to store response and source documents state = gr.State(value={"query": "","response": "", "source_docs": {}}) gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.") # Description with gr.Row(): query_input = gr.Textbox(label="Ask a question", placeholder="Type your query here") with gr.Row(): submit_button = gr.Button("Submit", variant="primary", scale = 0) # Submit button clear_query_button = gr.Button("Clear", scale = 0) # Clear button with gr.Row(): answer_output = gr.Textbox(label="Response", placeholder="Response will appear here") with gr.Row(): compute_metrics_button = gr.Button("Compute metrics", variant="primary" , scale = 0) attr_output = gr.Textbox(label="Attributes", placeholder="Attributes will appear here") metrics_output = gr.Textbox(label="Metrics", placeholder="Metrics will appear here") #with gr.Row(): # Attach event listeners to update model info on change new_gen_llm_input.change(reinitialize_gen_llm, inputs=new_gen_llm_input, outputs=model_info_display) new_val_llm_input.change(reinitialize_val_llm, inputs=new_val_llm_input, outputs=model_info_display) # Define button actions submit_button.click( fn=answer_question, inputs=[query_input, state], outputs=[answer_output, state] ) clear_query_button.click(fn=lambda: "", outputs=[query_input]) # Clear query input compute_metrics_button.click( fn=compute_metrics, inputs=[state], outputs=[attr_output, metrics_output] ) # Section to display logs with gr.Row(): log_section = gr.Textbox(label="Logs", interactive=False, visible=True, lines=10 , every=2) # Log section # Update UI when logs_state changes interface.queue() interface.load(update_logs_periodically, outputs=log_section) interface.launch()